

INFORME DE ENSAYOS DE VERIFICACIÓN DE SERVICIOS COMPLEMENTARIOS DE CONTROL DE TENSIÓN PSFV Willka

Informe Técnico

Preparado para:

Julio - 2025

A 1158 | R 1329-24

Tabla de Contenidos

TABLA I	DE CONTENIDOS	2
ÍNDICE	DE TABLAS Y GRÁFICOS	3
ABREVI	ATURAS Y ACRÓNIMOS	6
REGIST	RO DE COMUNICACIONES	7
SECCIÓ	N PRINCIPAL	8
1.	INTRODUCCIÓN	8
1.1.	Antecedentes	8
1.2.	Descripción del parque fotovoltaico	8
2.	PRINCIPALES COMPONENTES DE LA PLANTA	12
2. 2.	Descripción del control de planta y funcionalidades	
3.	DESCRIPCIÓN DE LOS ENSAYOS	13
	Ensayos a nivel planta	13
	Ensayos a nivel inversor	48
4.	CONCLUSIONES	61
ANEXO		62
1.	INFORMACIÓN TÉCNICA DEL EQUIPAMIENTO	62
1.1.	Datos de los paneles solares	62
1.2.	Datos de los inversores	63
1.3.	Transformador de unidades	64
1.4.	Transformador principal	65
1.5.	Cables de media tensión	66
1.6.	Reactor zig-zag para neutro artificial	67
1.7.	Línea de interconexión	68
2.	VERIFICACIÓN DE AJUSTES	71
2.1.	Lógicas de inyección de corriente y LVRT	71
	Ajuste de protecciones	73

3.	ARCHIVOS ADJUNTOS	ENTREGADOS	75

Índice de tablas y gráficos

Tabla 1. Parámetros operativos del PSFV Willka23
Tabla 2. Puntos de la curva teórica máxima PSFV Willka23
Tabla 3. Especificación del transformador de potencia 220/33 kV de la SE Willka65
Tabla 4. Especificaciones de los tramos de cables del sistema colector
Tabla 5. Parámetros eléctricos de los cables del sistema colector
Tabla 6. Colector equivalente del PSFV Willka67
Tabla 7. Características técnicas principales del reactor de neutro
Tabla 8. Ajuste de protección de tensión
Tabla 9. Ajuste de protección de frecuencia
Gráfico 1. Ubicación geográfica del PSFV Willka
Gráfico 2. Esquema unilineal de la SE Willka
Gráfico 3. Esquema unilineal del sistema colector
Gráfico 4. Curva de capabilidad del inversor Power Electronics HEMK GEN 312
Gráfico 5. Curva P-Q registrada en el punto de conexión del PSFV
Gráfico 6. Evolución temporal de las variables eléctricas. Relevamiento de la curva PQ - Punto 1
Gráfico 7. Evolución temporal de las variables eléctricas. Relevamiento de la curva PQ - Punto 2
Gráfico 8. Evolución temporal de las variables eléctricas. Relevamiento de la curva PQ - Punto 3
Gráfico 9. Evolución temporal de las variables eléctricas. Relevamiento de la curva PQ - Punto 4
Gráfico 10. Evolución temporal de las variables eléctricas. Relevamiento de la curva PQ - Punto 5
Gráfico 11. Evolución temporal de las variables eléctricas. Relevamiento de la curva PQ - Punto 6
Gráfico 12. Evolución temporal de las variables eléctricas. Relevamiento de la curva PQ - Punto 7
Gráfico 13. Evolución temporal de las variables eléctricas. Relevamiento de la curva PQ - Punto 8
Gráfico 14. Evolución temporal de las variables eléctricas. Relevamiento de la curva PQ - Punto N1
Gráfico 15. Evolución temporal de las variables eléctricas. Relevamiento de la curva PQ - Punto N2

Gráfico 16. Curva PQ máxima del PSFV Wilka24
Gráfico 17. Control de potencia reactiva. Alta Carga. Variables temporales26
Gráfico 18. Control de potencia reactiva. Alta Carga. Parámetros de desempeño26
Gráfico 19. Control de potencia reactiva. Media Carga. Variables temporales28
Gráfico 20. Control de potencia reactiva. Media Carga. Parámetros de desempeño29
Gráfico 21. Control de potencia reactiva. Baja Carga. Variables temporales31
Gráfico 22. Control de potencia reactiva. Baja Carga. Parámetros de desempeño31
Gráfico 23. Control de tensión. Alta Carga. Variables temporales
Gráfico 24. Control de tensión. Alta Carga. Parámetros de desempeño34
Gráfico 25. Control de tensión VQ. Alta carga. Verificación del estatismo VQ34
Gráfico 26. Control de tensión. Media Carga. Variables temporales
Gráfico 27. Control de tensión. Media Carga. Parámetros de desempeño37
Gráfico 28. Control de tensión VQ. Media Carga. Verificación del estatismo VQ37
Gráfico 29. Control de tensión. Baja Carga. Variables temporales
Gráfico 30. Control de tensión. Baja Carga. Parámetros de desempeño40
Gráfico 31. Control de tensión VQ. Baja Carga. Verificación del estatismo VQ40
Gráfico 32. Control de factor de potencia. Alta Carga. Variables temporales42
Gráfico 33. Control de factor de potencia. Alta Carga. Parámetros de desempeño43
Gráfico 34. Control de factor de potencia. Media Carga. Variables temporales45
Gráfico 35. Control de factor de potencia. Media Carga. Parámetros de desempeño45
Gráfico 36. Control de factor de potencia. Baja Carga. Variables temporales47
Gráfico 37. Control de factor de potencia. Baja Carga. Parámetros de desempeño48
Gráfico 38. Control de potencia reactiva a nivel inversor. Alta Carga50
Gráfico 39. Control de potencia reactiva. Alta Carga. Parámetros de desempeño50
Gráfico 40. Control de potencia reactiva a nivel inversor. Media Carga52
Gráfico 41. Control de potencia reactiva. Media Carga. Parámetros de desempeño52
Gráfico 42. Control de potencia reactiva a nivel inversor. Baja Carga54
Gráfico 43. Control de potencia reactiva. Baja Carga. Parámetros de desempeño54
Gráfico 44. Control de potencia reactiva a nivel inversor. Alta Carga56
Gráfico 45. Control de potencia reactiva. Alta Carga. Parámetros de desempeño56
Gráfico 46. Control de potencia reactiva a nivel inversor. Media Carga. Variables temporales
Gráfico 47. Control de potencia reactiva. Media Carga. Parámetros de desempeño58
Gráfico 48. Control de potencia reactiva a nivel inversor. Baja Carga. Variables temporales
Gráfico 49. Control de potencia reactiva. Baja Carga. Parámetros de desempeño60
Gráfico 50. Características técnicas de los paneles solares

Gráfico 51. Características generales de los inversores	63
Gráfico 52. Curva de capabilidad de los inversores	64
Gráfico 53. Curva límite tensión-tiempo Power Electronics HEMK GEN 3	71
Gráfico 54. Curvas límite tensión-tiempo norma NT en punto de conexión	71
Gráfico 55. Inyección de corriente reactiva ante huecos de tensión. Power Electron HEMK GEN 3.	
Gráfico 56. Ajuste de protección de frecuencia.	74

Abreviaturas y acrónimos

CEN Coordinador Eléctrico Nacional

CNE Comisión Nacional de Energía

CDC Centro de despacho del coordinador
ERNC Energía Renovables No Convencional

NTSyCS Norma Técnica de Seguridad y Calidad de Servicio

PE Parque eólico

PSFV Parque solar fotovoltaico

SE Subestación eléctrica

AT Alta tensión

MT Media tensión

BT Baja tensión

ONAN Oil Natural Air Natural

ONAF Oil Natural Air Forced

SEN Sistema Eléctrico Nacional

RCB Regulador Bajo Carga

PMU Power Management Unit

Registro de comunicaciones

Registro de las actividades, comunicaciones y aprobación de informes.

N°	Fecha dd/mm/año	Preparó	Revisó	Aprobó	Observaciones
0	08/07/2025	РВ	FG	FM	Emisión Inicial

Sección principal

1. Introducción

1.1. Antecedentes

En el siguiente informe se documentan los ensayos de campo realizados en el Parque Fotovoltaico Wilka durante los días 13 a 23 de mayo del 2025, en relación con el proceso de verificación de la prestación de servicios complementarios de control de tensión.

De esta manera, se han obtenido registros que muestran la respuesta de los sistemas de control del parque según los requerimientos en el Anexo Técnico: Verificación De Instalaciones Para La Prestación SSCC de la Norma Técnica de Servicios Complementarios (NTSSCC) vigente, y en la Guía de Verificación de Servicios Complementarios de Control de Tensión.

1.2. Descripción del parque fotovoltaico

El PSFV Willka se encuentra emplazado en la región de Arica y Parinacota en la zona norte de Chile. Está formado por 26 Inversores marca Power Electronics, modelo HEMK GEN 3 660 V – FS4200K de una capacidad nominal de 4.2 MVA cada uno, siendo la potencia instalada de 109,2 MVA (26x4,2 MVA). La Potencia Neta comprometida en el punto de conexión es de 98 MW.

Los 26 inversores se distribuyen en 15 centros de transformación de los cuales 11 contienen 2 inversores cada uno y el resto está formado por un inversor. La distribución en media tensión se realiza mediante un sistema colector desarrollado en 33 kV formado por 5 circuitos que colectan la potencia de los 15 centros de transformación. Los centros de transformación formados por dos inversores se conectan a la red mediante transformadores de 3 arrollamientos de 33/0,66/0,66 kV de una potencia de 8,4/4,2/4,2 MVA. Los centros de transformación formados por un inversor se conectan a la red de media tensión mediante transformadores de dos arrollamientos de 33/0,66 kV y una potencia de 4,2 MVA.

En el Gráfico 1 se muestra la ubicación geográfica del parque, en el Gráfico 2 el esquema unilineal de la SE Willka y en el Gráfico 3 muestra un esquema unilineal del sistema colector en 33 kV.

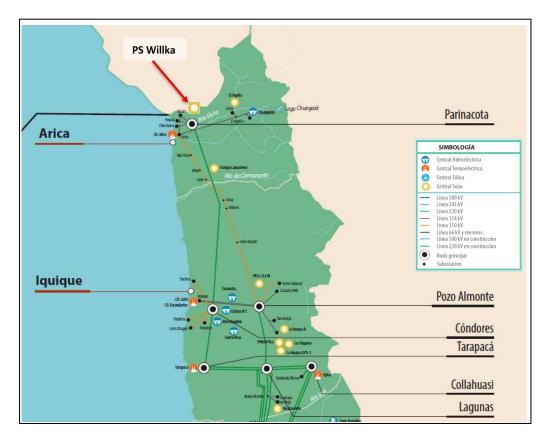


Gráfico 1. Ubicación geográfica del PSFV Willka.

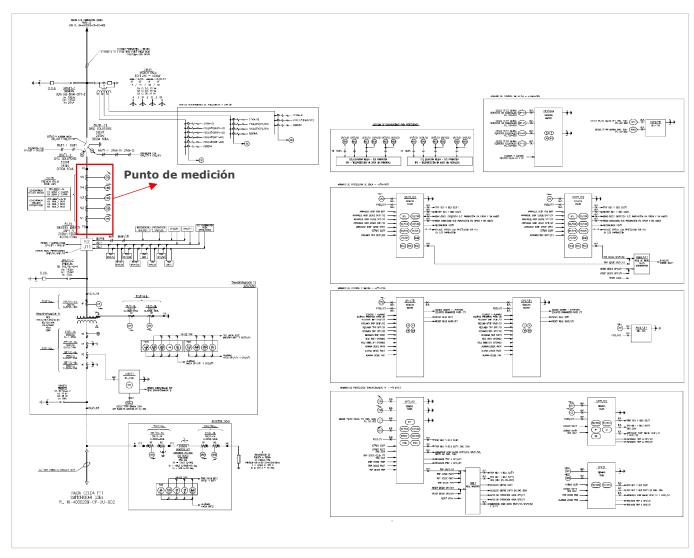


Gráfico 2. Esquema unilineal de la SE Willka.

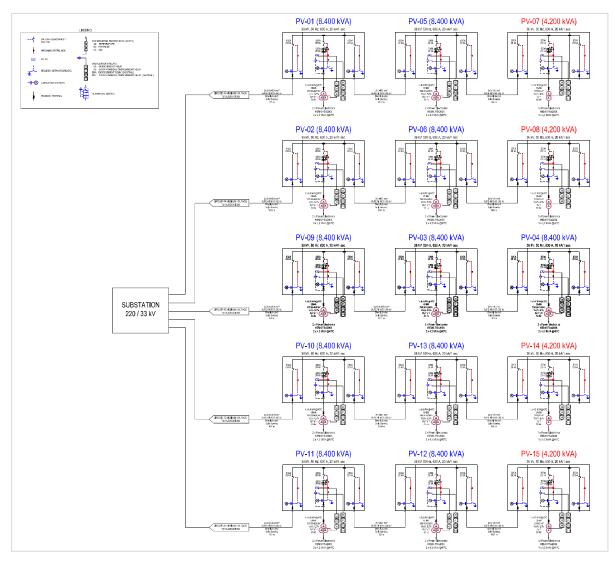


Gráfico 3. Esquema unilineal del sistema colector.

Los circuitos colectores acometen a la barra de 33 kV del transformador de potencia de 220/33 kV, 90/120 MVA (ONAN/ONAF), de la SE Willka.

El punto de conexión del PSFV es en la barra de 220 kV de la SE Willka. El PSFV se conecta al sistema eléctrico a través de una línea 220 kV de 18 km de longitud entre la SE Willka y la SE Parinacota.

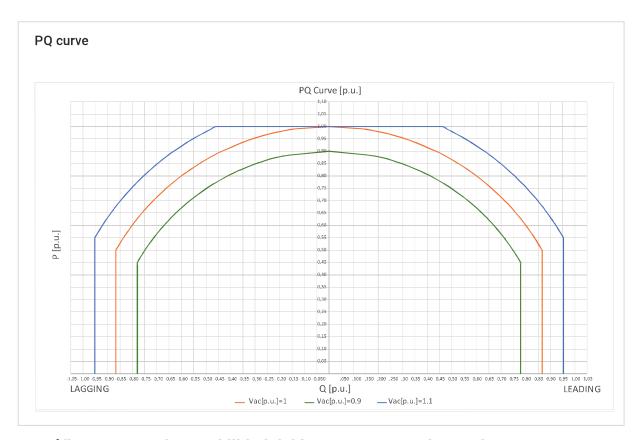


Gráfico 4. Curva de capabilidad del inversor Power Electronics HEMK GEN 3.

2. Principales componentes de la planta

2.1. Descripción del control de planta y funcionalidades

El control del PSFV Willka se realiza a través de un único PPC (Power Plant Controller), siendo la barra de control del parque la situada eléctricamente en la barra de 220 kV de la SE Willka. El PPC puede operar en los siguientes modos de control:

2.1.1 Funciones de control de potencia activa

• Control de potencia activa de 0-100%: Permite ajustar la consigna de potencia activa a un valor determinado, el cual es distribuido entre todos los inversores. Si se activa la función de limitación de rampa, tanto la rampa de bajada como de subida o toma de carga quedarán limitadas a una tasa de crecimiento determinada (en %/min). Para el caso del PSFV Willka esta tasa estaba configurada en 19,6 MW/min (20%/min respecto a la potencia base de 98 MW), la cual cumple con la máxima tasa de toma de carga exigida en la norma técnica NTSyCS.

 Control de frecuencia: Esta función contempla la respuesta de la potencia activa en función a las fluctuaciones de frecuencia respecto a la frecuencia nominal (50 Hz). La respuesta del parque estará dada por una curva de potencia frecuencia que posee un estatismo y una banda muerta. Para el caso particular del PSFV Willka este posee una banda muerta configurada en ±200 mHz, con un estatismo de 5%.

2.1.2 Funciones de control de potencia reactiva

- Control de tensión VQ: permite definir un valor de consigna de tensión, controlando la inyección de potencia reactiva según una recta VQ predefinida (estatismo V/Q). Se puede configurar la pendiente y la banda muerta de dicha recta. Para el PSFV Willka la banda muerta es de 0% y el estatismo estaba configurado en 5%.
- **Control de potencia reactiva:** Permite definir un valor de consigna de potencia reactiva en el punto de conexión, la cual es distribuida entre todas las unidades. Este tipo de control permite además agregar una limitación de la rampa de subida y de bajada que para el caso del PSFV Willka estaba configurada en 10 MVAr/min.
- **Control de factor de potencia:** Permite definir un valor de consigna de factor de potencia en el punto de conexión, controlando la inyección de potencia reactiva para mantenerlo constante.

2.1.3 Operación de la planta sin recurso primario

Se aclara en este informe que la planta puede operar sin recurso primario, es decir, la función Q night se encuentra habilitada y por ende se realizan ensayos con este modo de operación.

2.1.4 Configuración N-1 inversores desde el control de planta

Se aclara en este informe que desde el PPC de la planta no es posible apagar N-1 inversores.

3. Descripción de los ensayos

Se realizaron ensayos para verificar la respuesta de todos los modos del control de planta (PPC) y también de los inversores. Con este objetivo, la medición para los ensayos a nivel planta se efectuó en el punto de conexión del parque (en la barra de 220 kV de la SE Wilka). Se realizaron los ensayos sobre inversor XX (inversor más lejano) y el inversor XX (inversor más cercano).

3.1. Ensayos a nivel planta

3.1.1 Verificación de la curva PQ teórica

El objetivo de este ensayo es el de modificar el punto de operación del parque fotovoltaico de manera de verificar el cumplimiento de la capacidad de absorción e inyección de potencia activa/reactiva en régimen permanente en el punto de conexión de 210 kV. Se relevaron 8 puntos extremos de la curva PQ teórica (puntos 1 a 8). Dentro de los 8 puntos relevados se consideraron los correspondientes a potencia máxima disponible (>80 % de Pn) y mínimo técnico (informado en 1.701 MW para el PSFV Wilka). Además, se relevan dos puntos extra correspondientes al modo noche de la central (N1 y N2).

A continuación, se muestran los resultados obtenidos:

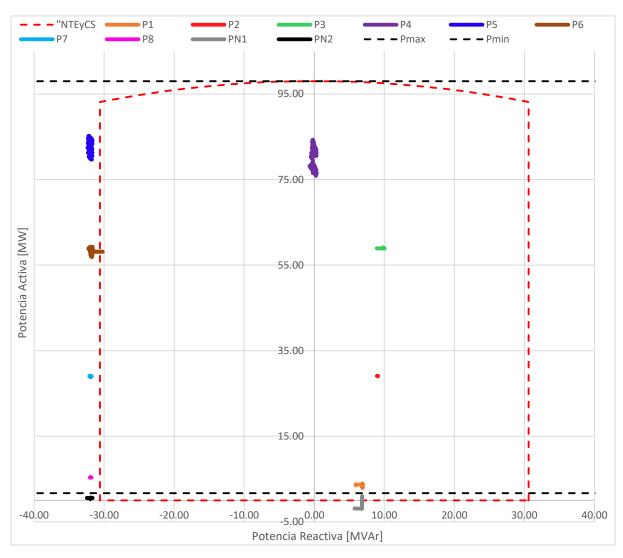
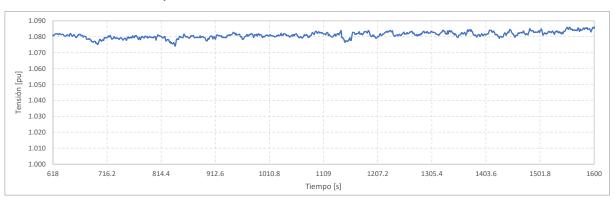



Gráfico 5. Curva P-Q registrada en el punto de conexión del PSFV.

Para resguardar la integridad de las instalaciones, se consideraron los límites de corriente de la red colectora, los transformadores de unidad y el transformadore de potencia (carga máxima del 100%). Además, se consideraron límites en la tensión en bornes de los inversores en un valor máximo de 1.05 pu y un valor mínimo de 0.95 pu (respecto a la tensión MT Ac de 33 kV).

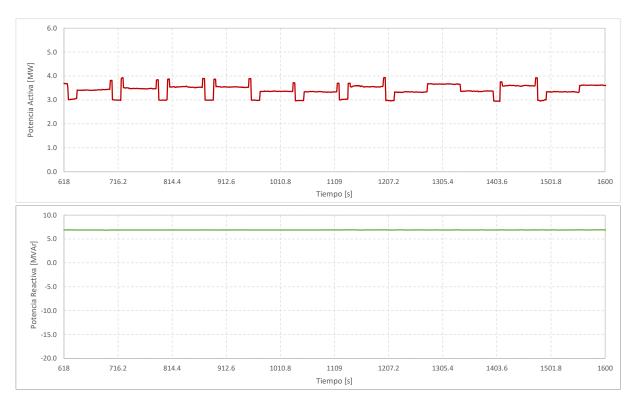
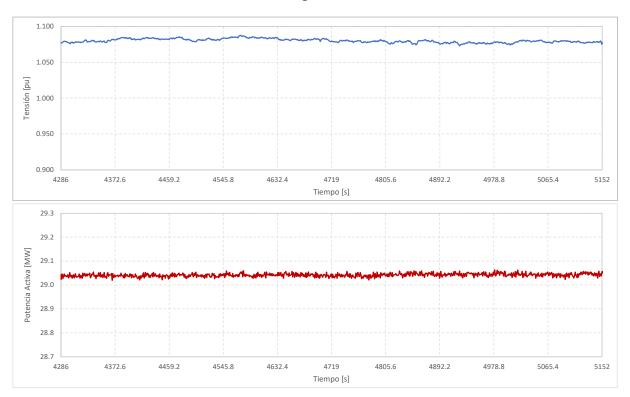



Gráfico 6. Evolución temporal de las variables eléctricas. Relevamiento de la curva PQ - Punto 1.



Gráfico 7. Evolución temporal de las variables eléctricas. Relevamiento de la curva PQ – Punto 2

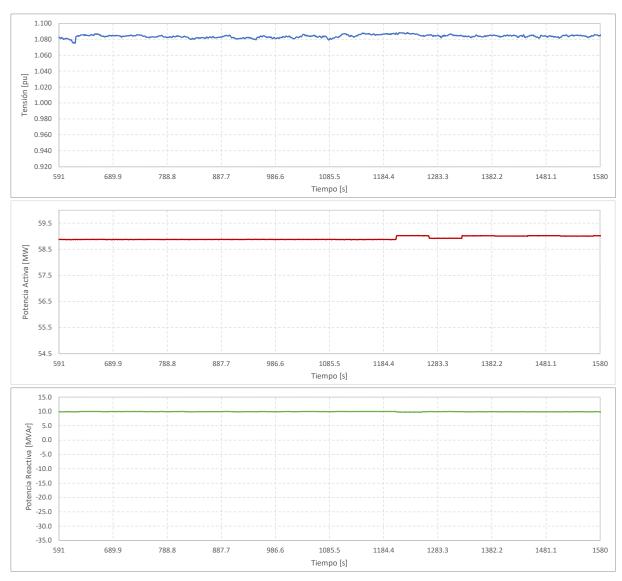


Gráfico 8. Evolución temporal de las variables eléctricas. Relevamiento de la curva PQ – Punto 3.

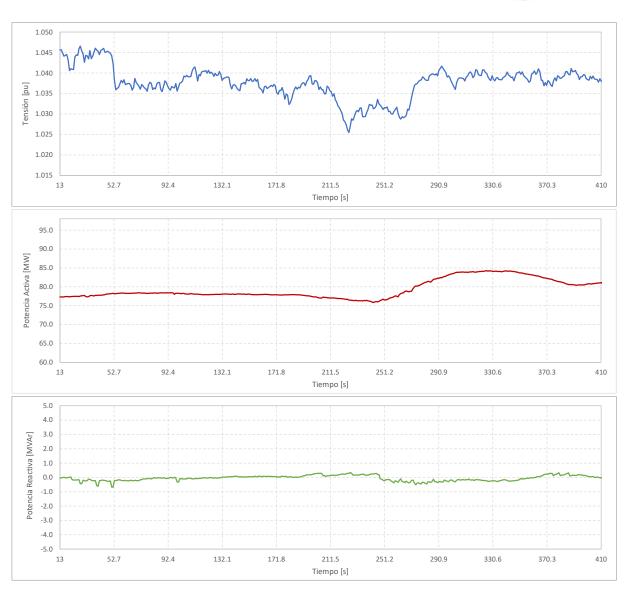


Gráfico 9. Evolución temporal de las variables eléctricas. Relevamiento de la curva PQ - Punto 4

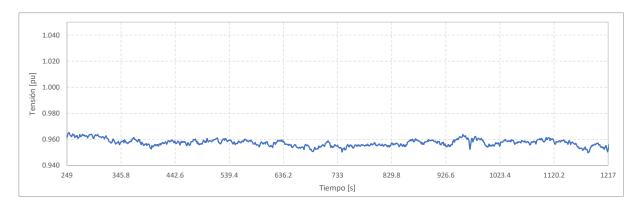
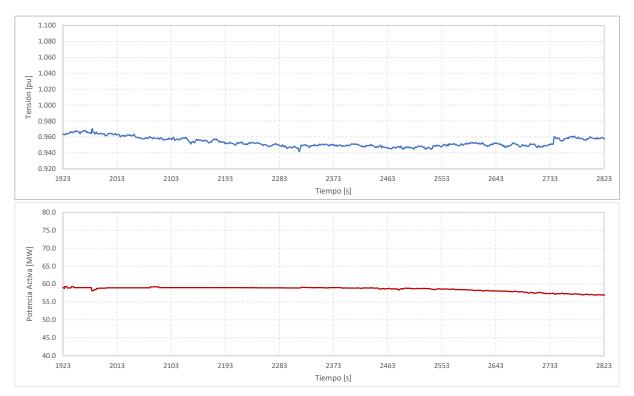



Gráfico 10. Evolución temporal de las variables eléctricas. Relevamiento de la curva PQ – Punto 5.

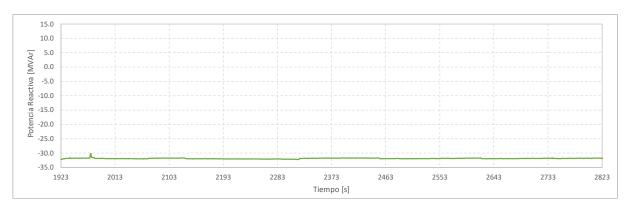


Gráfico 11. Evolución temporal de las variables eléctricas. Relevamiento de la curva PQ – Punto 6.

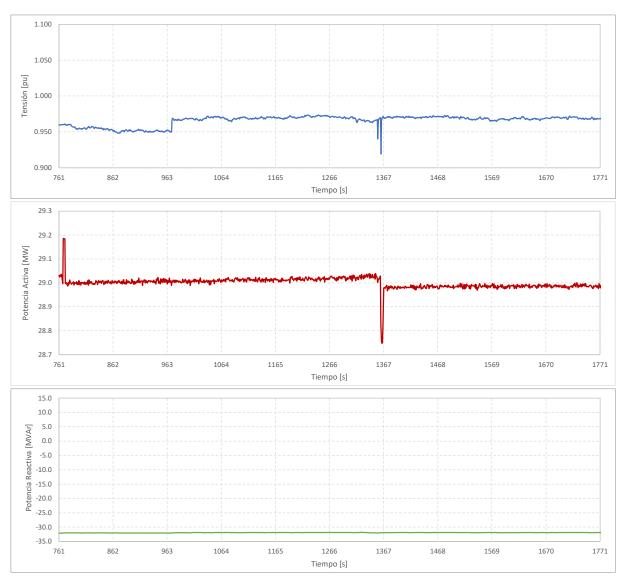


Gráfico 12. Evolución temporal de las variables eléctricas. Relevamiento de la curva PQ – Punto 7.

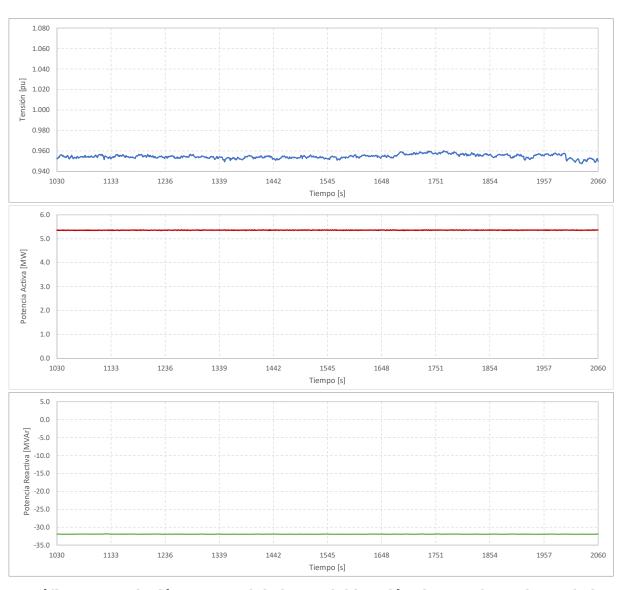


Gráfico 13. Evolución temporal de las variables eléctricas. Relevamiento de la curva PQ - Punto 8.

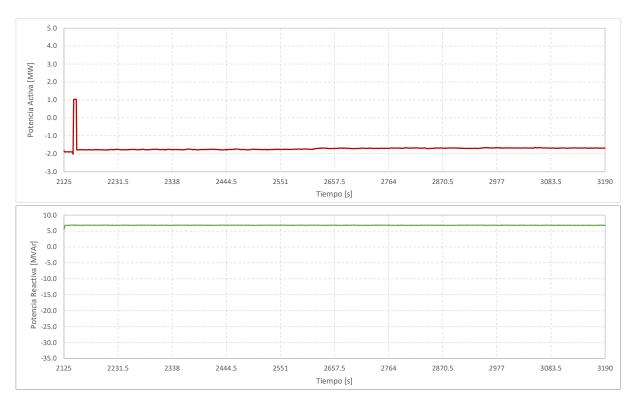
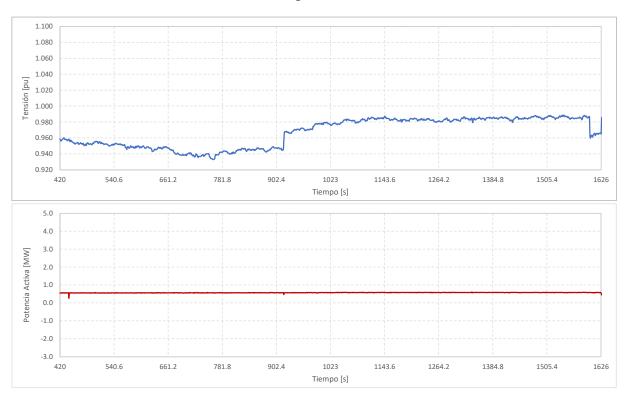



Gráfico 14. Evolución temporal de las variables eléctricas. Relevamiento de la curva PQ – Punto N1.

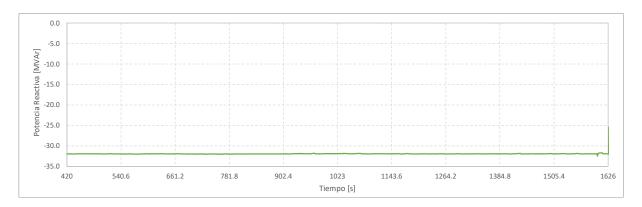


Gráfico 15. Evolución temporal de las variables eléctricas. Relevamiento de la curva PQ – Punto N2.

En la siguiente tabla se muestra el resumen de los puntos extremos obtenidos:

Punto	V [pu]	P [MW]	Q teórico [MVAr]	Q alcanzado [MVAr]	Observaciones
1	1.085	3.93	32	6.90	La tensión máxima aceptable por el coordinador es de 239 kV, sin posibilidad de regulación, limitando la inyección de reactivos a todo nivel de carga.
2	1.087	29.06	32	9.04	No se autoriza por parte del CDC la inyección de más de +10 MVAr.
3	1.085	59.02	32	9.95	No se autoriza por parte del CDC la inyección de más de +10 MVAr.
4	1.046	84.13	32	0.30	Debido a las condiciones del sistema el CDC no permite una mayor inyección de reactivo ni mantener este nivel por 15 minutos.
5	0.963	85.10	-32	-32.34	-
6	0.970	59.27	-32	-32.23	Al final del registro disminuye ligeramente la potencia activa debido a la disponibilidad de recurso
7	0.973	29.02	-32	-31.93	-
8	0.959	5.37	-32	-31.98	Para mantener la estabilidad de los inversores la potencia activa se mantiene en el valor mostrado.
N1	1.080	-1.77	32.00	6.79	No se logra alcanzar un valor mayor debido a la tensión de la red.

N2 0.986 0.57 -32.00 -32.45

Nota: En todos los puntos relevados, se solicitó al centro de despacho de carga (CDC) variar la tensión en el punto de conexión a los valores indicados en la "Guía-de-Verificación-Control-de-Tensión" (0.9, 0.95, 1, 1.05, 1.1 pu). Desde el CDC no pudo variarse la tensión en el punto de conexión para todos los casos, por falta de capacidad en centrales cercanas y las condiciones del sistema. De acuerdo con lo anterior, el registro de tensión refleja la tensión presente en la red para cada punto de operación, el cual varía principalmente en función de la inyección / absorción de potencia reactiva del PSFV Willka.

La curva PQ final para todos los niveles de tensión se completó, entonces, mediante simulación en PowerFactory utilizando el modelo desarrollado de la planta.

La limitación de potencia reactiva en el POI de ± 32 MVAr impuesta en el controlador de planta se encuentra definida en el diseño de la planta con la finalidad de no superar los rangos de tensiones normales en terminales del inversor (660 Vac $\pm 5\%$) y no puede ser modificada por el operador, ya que se encuentra programada en forma interna en la lógica del PPC.

A continuación, se muestran las tablas con el resumen de los valores PQ para los distintos niveles de tensión en el formato requerido por el CEN ("Guía de control de tensión" – Anexo B – Junio 2020) para presentar en la tabla adjunta "GME_Curva_PQ_PSFV Wilka"

Tabla 1. Parámetros operativos del PSFV Willka.

Nombre central	PSFV Willka
Unidad	1
Potencia mínima aprobada	1.701
Potencia mínima	1.701
Potencia máxima	98.00
Tensión nominal	220

Tabla 2. Puntos de la curva teórica máxima PSFV Willka.

Potencia	Tensión	1.7	1.7	29.4	29.4	58.8	58.8	98.0	98.0
PSFV Tamaya [Mvar]	0.9	+32	-32	+32	-32	+32	-32	+32	-32
PSFV Tamaya [Mvar]	0.95	+32	-32	+32	-32	+32	-32	+32	-32
PSFV Tamaya [Mvar]	1	+32	-32	+32	-32	+32	-32	+32	-32

PSFV Tamaya [Mvar]	1.05	+32	-32	+32	-32	+32	-32	+32	-32
PSFV Tamaya [Mvar]	1.1	+32	-32	+32	-32	+32	-32	+32	-32

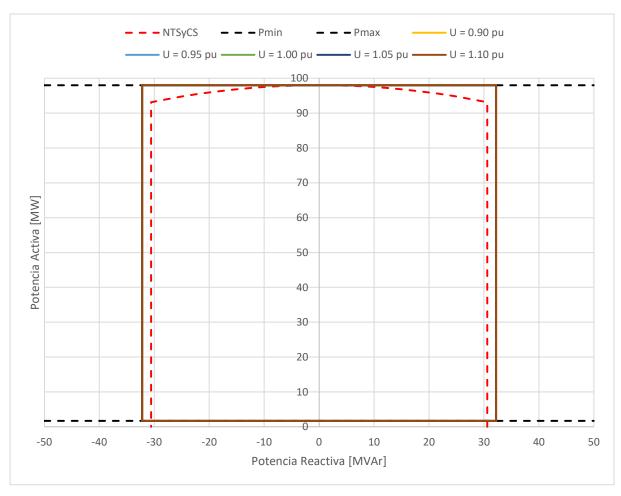
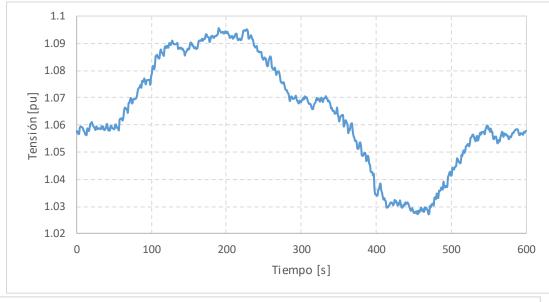


Gráfico 16. Curva PQ máxima del PSFV Wilka.


3.1.2 Ensayos del control de potencia reactiva / tensión


Se realizaron ensayos para la verificación del desempeño del modelo de control de tensión y su sistema de regulación de potencia reactiva, para distintas condiciones de generación de potencia activa, considerando niveles de baja (10% Pn), media (50% Pn) y alta (>80% Pn) carga. Ninguno de los controles ensayados presenta error de estado estacionario, ni sobre oscilación.

a.1) Control de potencia reactiva (control Q)

Para la realización de esta prueba, se varió la consigna de potencia reactiva del control de planta en escalones de ± 10 MVAr. Los resultados se muestran a continuación.

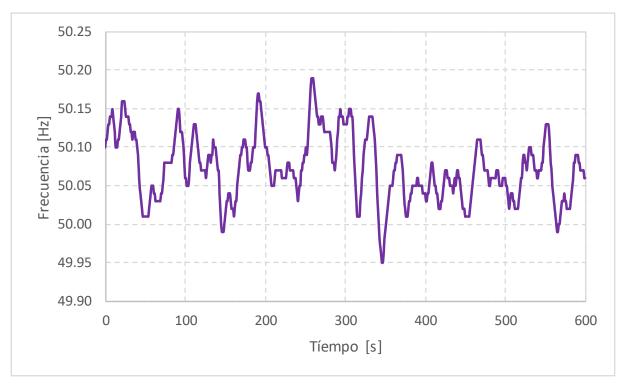


Gráfico 17. Control de potencia reactiva. Alta Carga. Variables temporales.

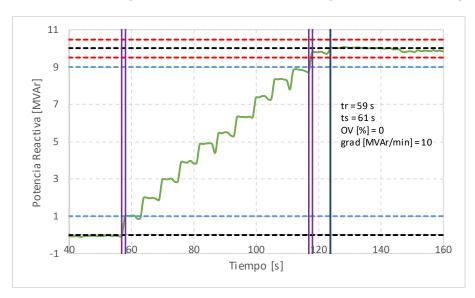
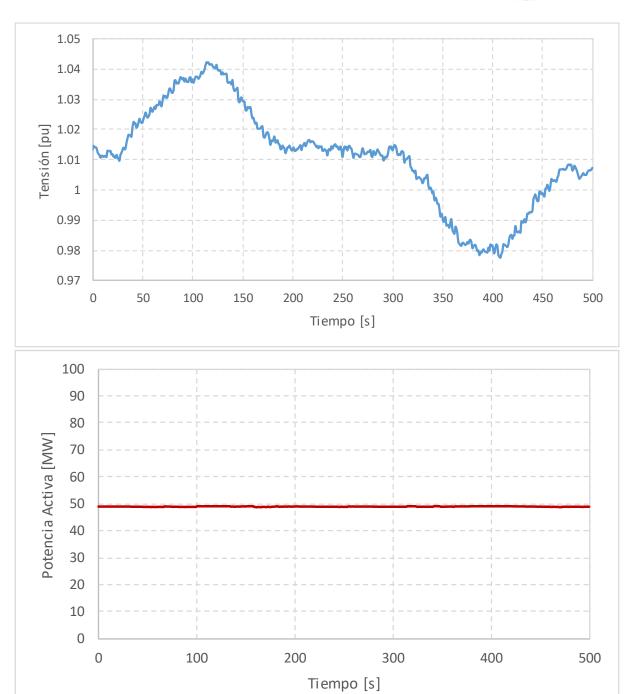



Gráfico 18. Control de potencia reactiva. Alta Carga. Parámetros de desempeño.

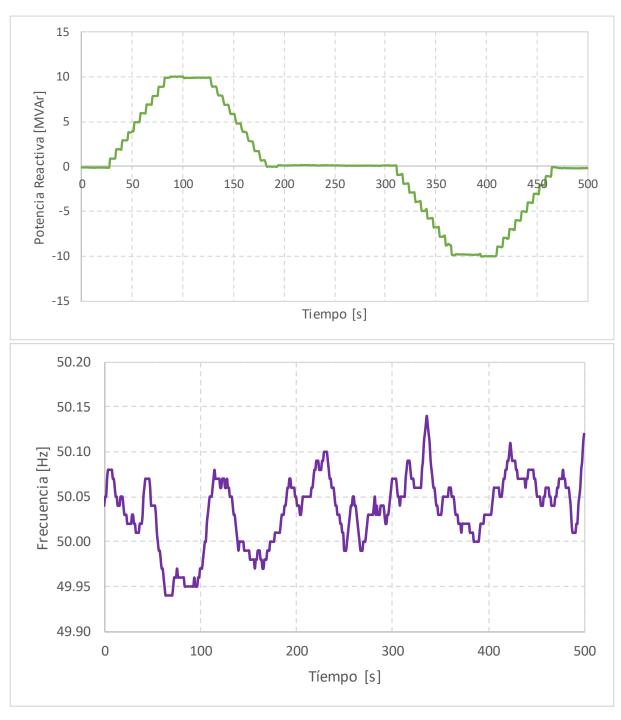


Gráfico 19. Control de potencia reactiva. Media Carga. Variables temporales.

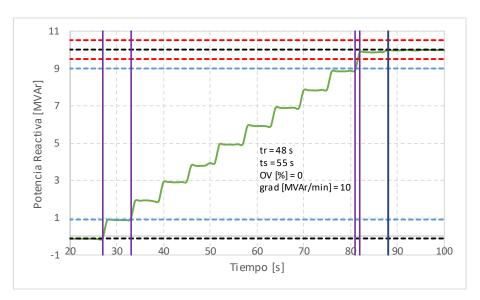
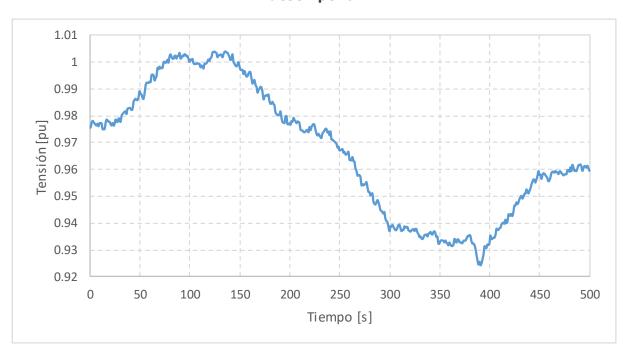
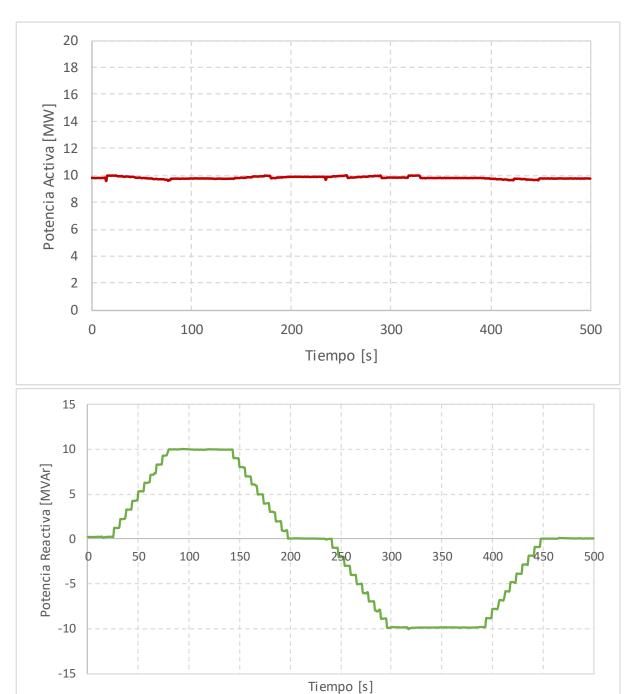




Gráfico 20. Control de potencia reactiva. Media Carga. Parámetros de desempeño.

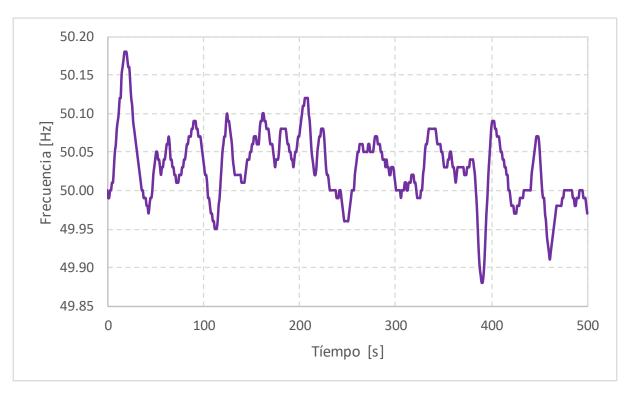


Gráfico 21. Control de potencia reactiva. Baja Carga. Variables temporales.

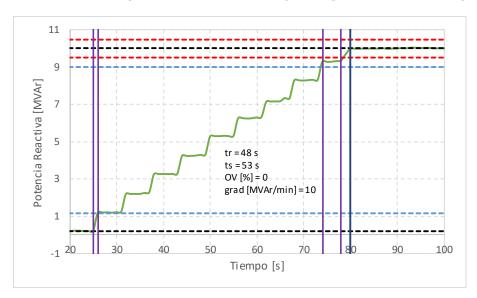
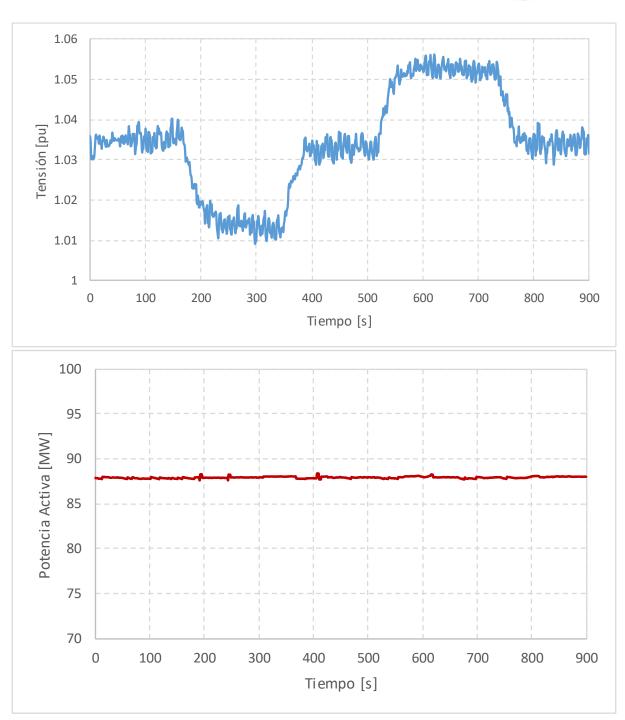



Gráfico 22. Control de potencia reactiva. Baja Carga. Parámetros de desempeño.

a.2) Control de tensión (control VQ)

Para la realización de esta prueba, se activó el modo de control de tensión VQ (o con estatismo) y se varió la consigna de tensión del control de planta en escalones de + 3% para los estados de alta, media y baja carga.

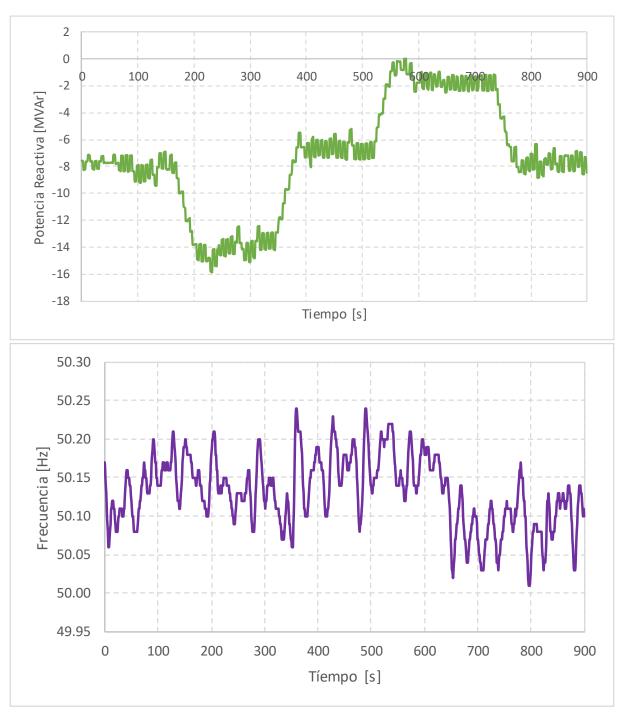


Gráfico 23. Control de tensión. Alta Carga. Variables temporales.

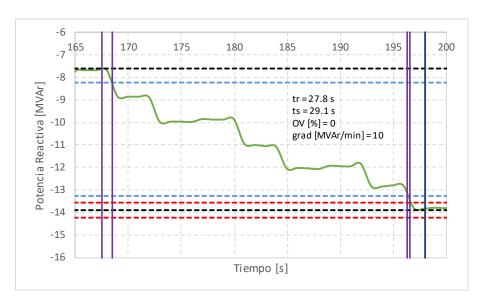
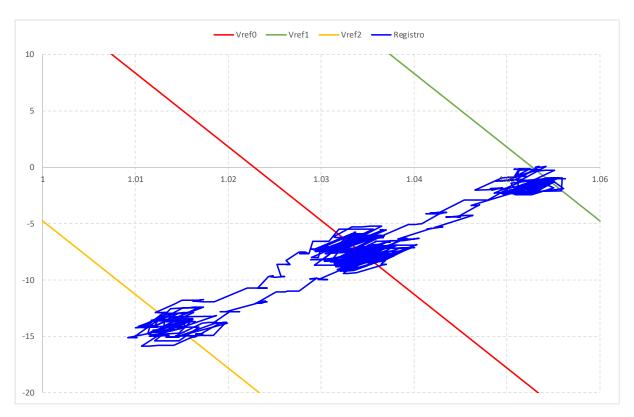
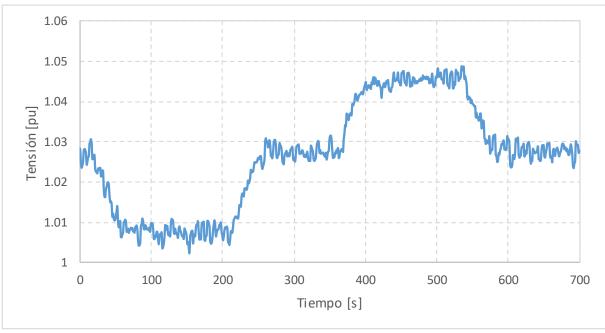
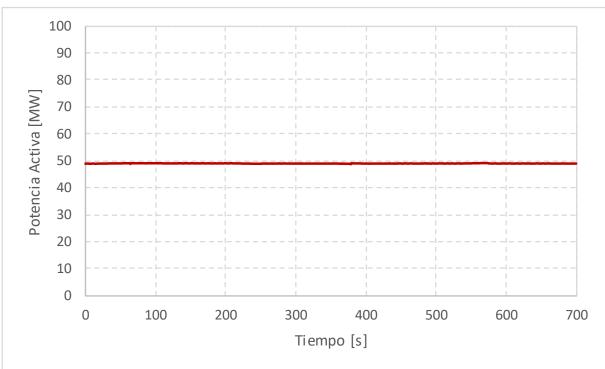
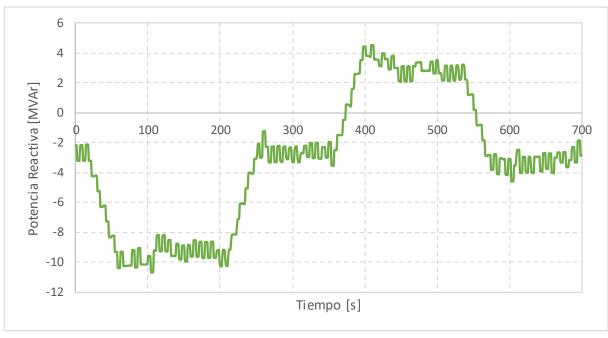


Gráfico 24. Control de tensión. Alta Carga. Parámetros de desempeño.


Gráfico 25. Control de tensión VQ. Alta carga. Verificación del estatismo VQ.

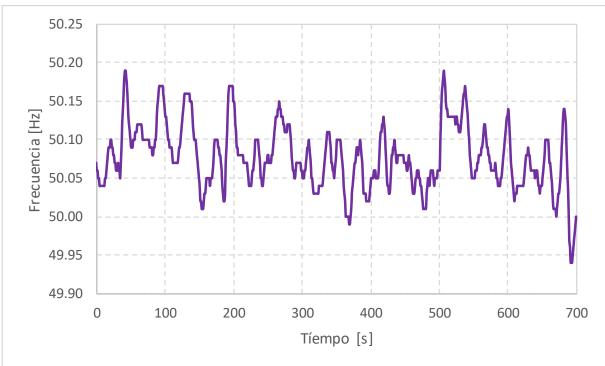
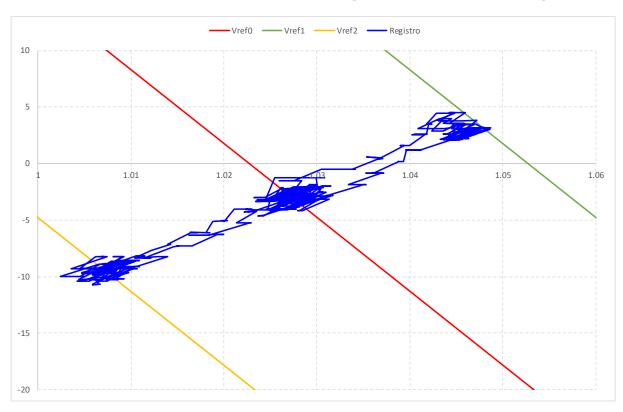
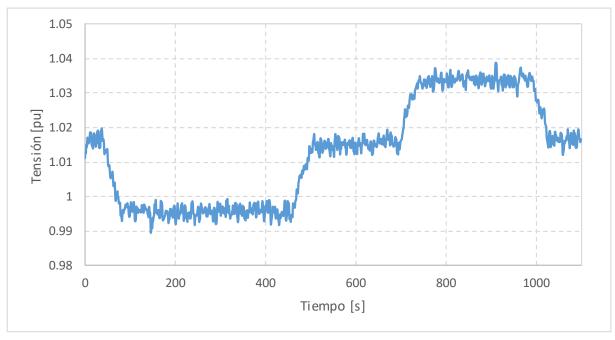
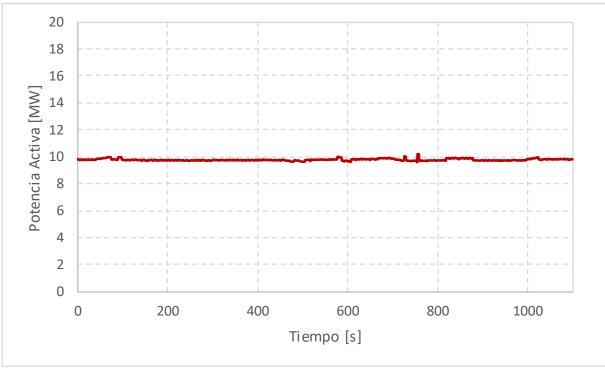
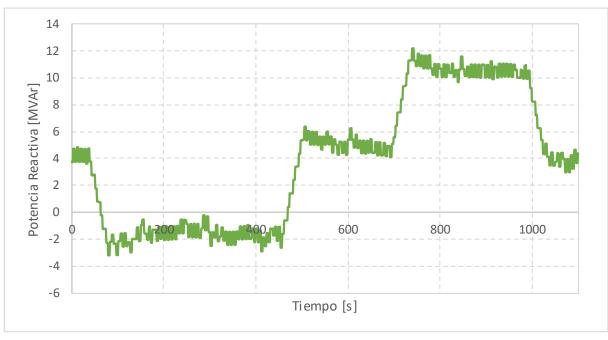


Gráfico 26. Control de tensión. Media Carga. Variables temporales.

Gráfico 27. Control de tensión. Media Carga. Parámetros de desempeño.


Gráfico 28. Control de tensión VQ. Media Carga. Verificación del estatismo VQ.

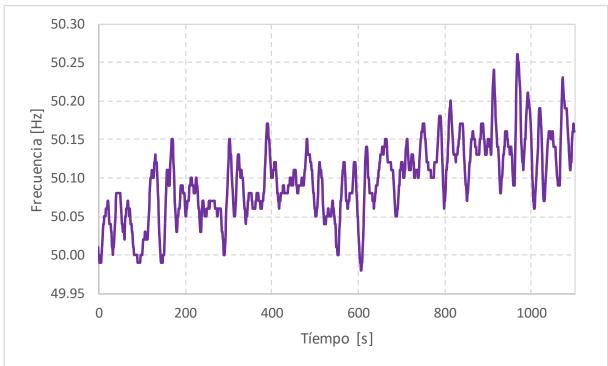


Gráfico 29. Control de tensión. Baja Carga. Variables temporales.

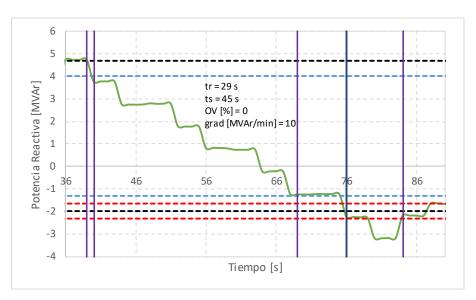
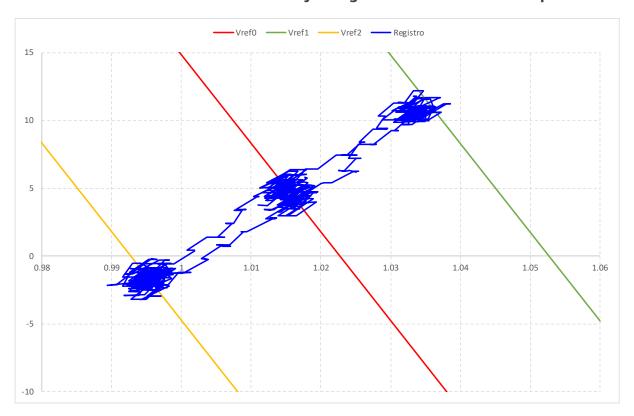
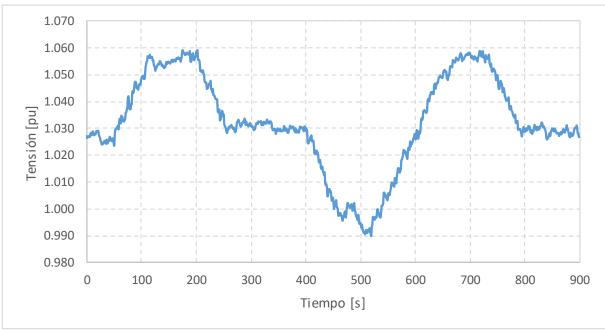
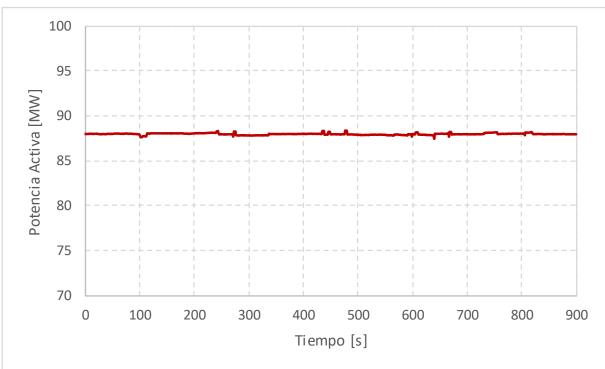
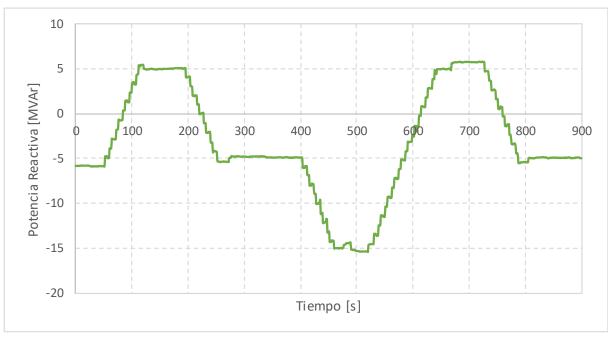


Gráfico 30. Control de tensión. Baja Carga. Parámetros de desempeño.


Gráfico 31. Control de tensión VQ. Baja Carga. Verificación del estatismo VQ.

a.3) Control de factor de potencia (control Φ)


Para la realización de esta prueba, se varió la consigna de factor de potencia del control de planta desde el valor ajustado previamente en escalones de ± 0.998 (alta carga), ± 0.98

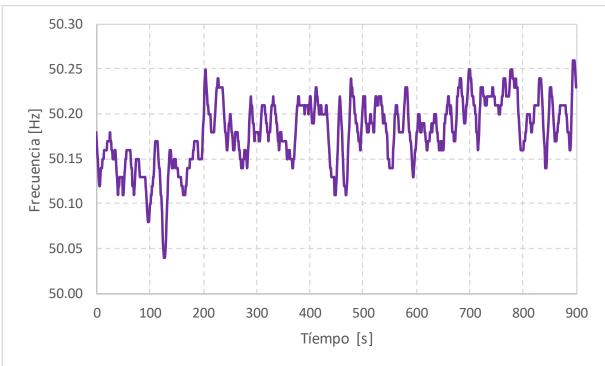


Gráfico 32. Control de factor de potencia. Alta Carga. Variables temporales.

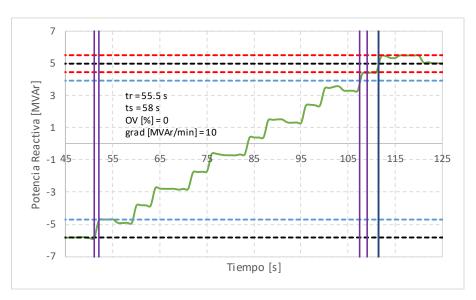
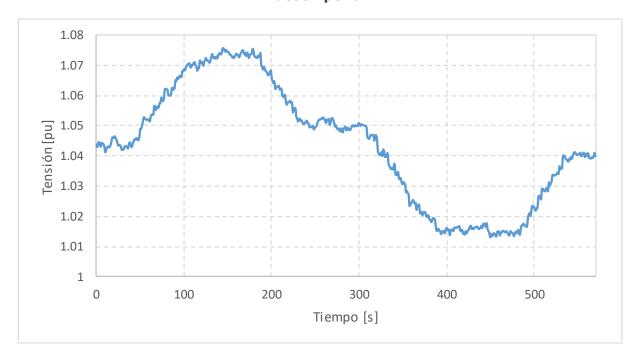
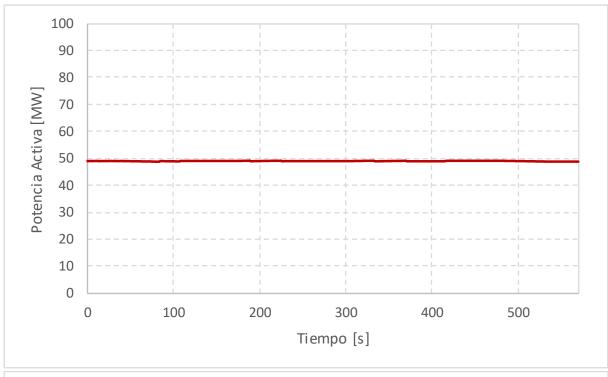




Gráfico 33. Control de factor de potencia. Alta Carga. Parámetros de desempeño.

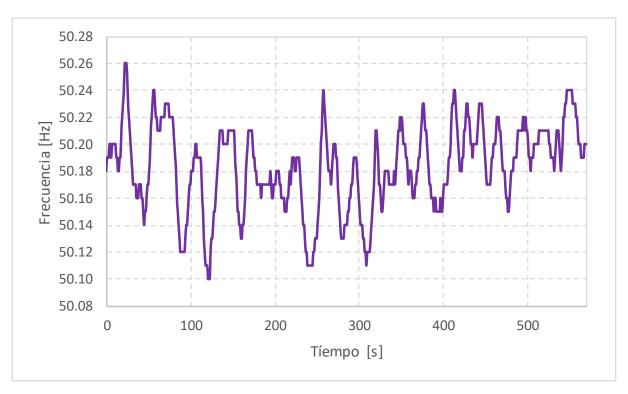


Gráfico 34. Control de factor de potencia. Media Carga. Variables temporales.

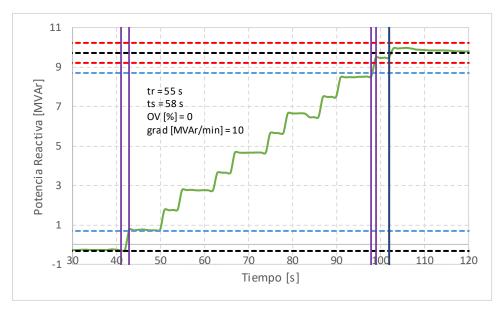
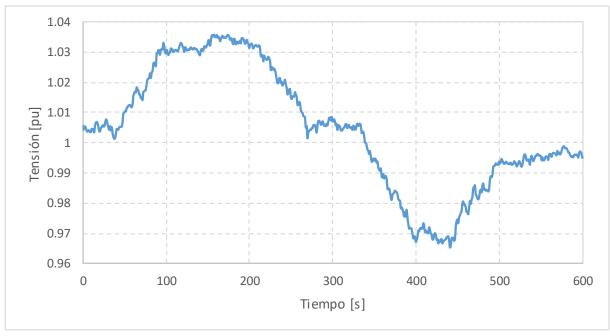
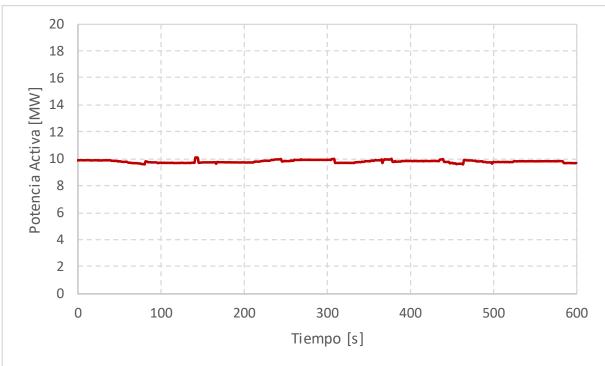





Gráfico 35. Control de factor de potencia. Media Carga. Parámetros de desempeño.

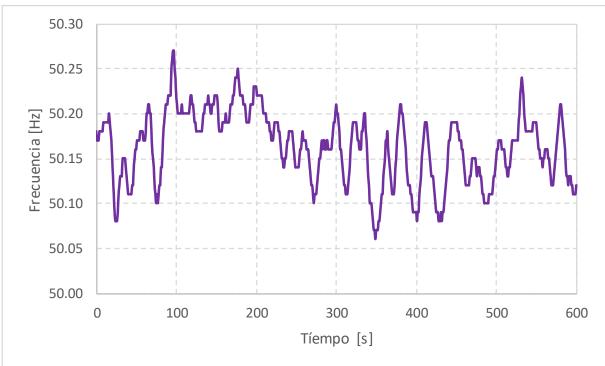


Gráfico 36. Control de factor de potencia. Baja Carga. Variables temporales.

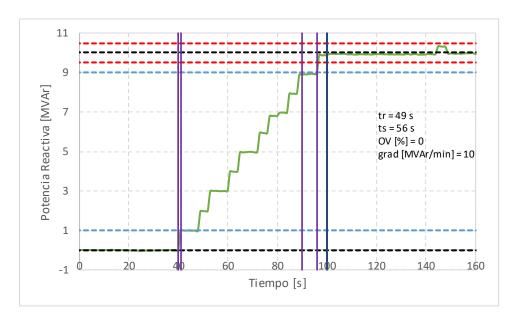
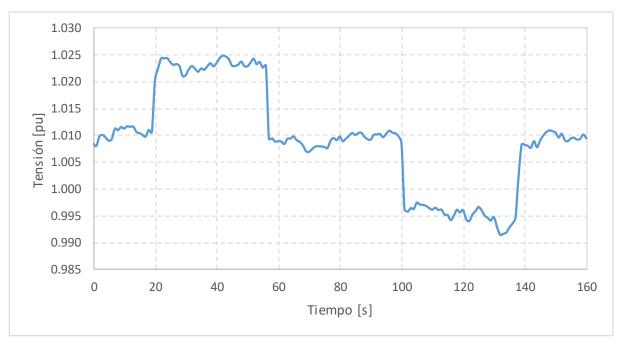
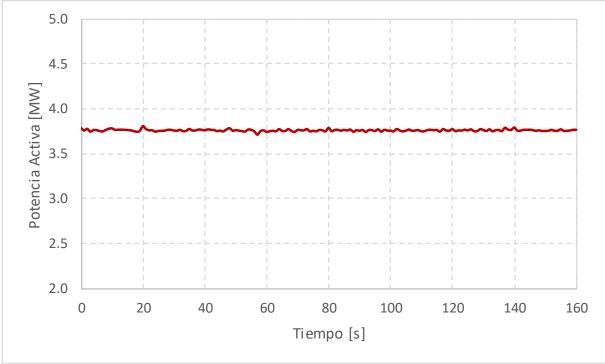


Gráfico 37. Control de factor de potencia. Baja Carga. Parámetros de desempeño.

3.2. Ensayos a nivel inversor


Se realizaron ensayos al control de potencia activa y reactiva sobre los inversores INV 14 (inversor más lejano) y INV 15 (inversor más cercano). Los modos de control de tensión y factor de potencia no están habilitados y por lo tanto no fueron ensayados.


3.2.1 Inversor más cercano (INV 15)

a.1) Control de potencia reactiva (Control Q)

Para la realización de esta prueba, se varió la consigna de potencia reactiva del inversor en pasos de \pm 0.6 MVAr para alta, media y baja carga. Los resultados se muestran a continuación.

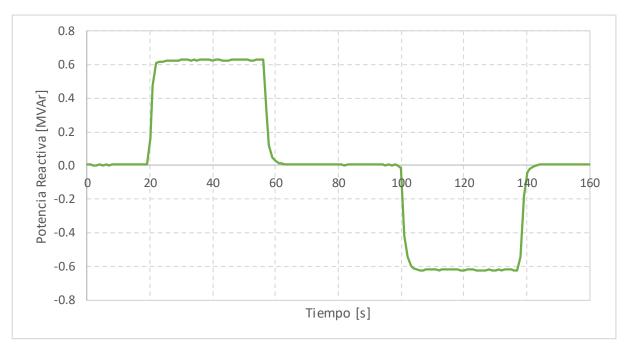


Gráfico 38. Control de potencia reactiva a nivel inversor. Alta Carga.

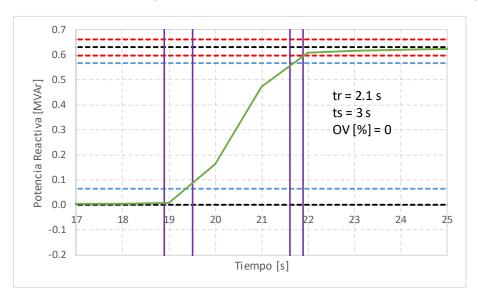
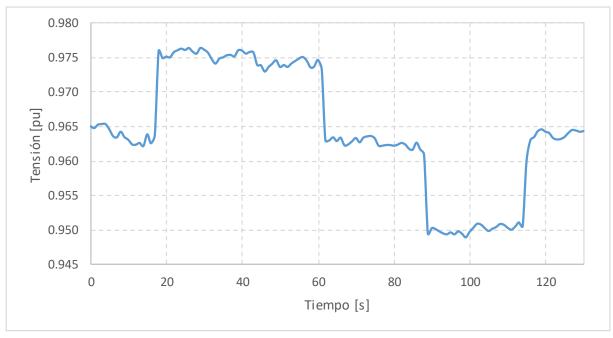
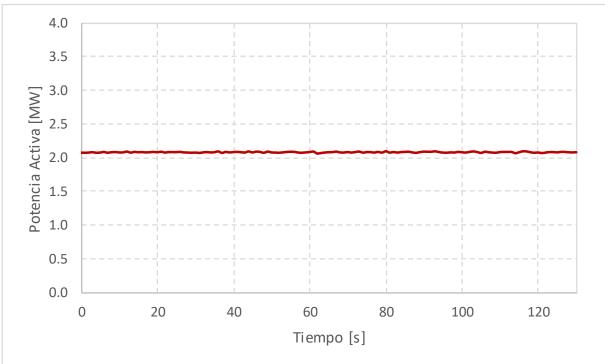




Gráfico 39. Control de potencia reactiva. Alta Carga. Parámetros de desempeño.

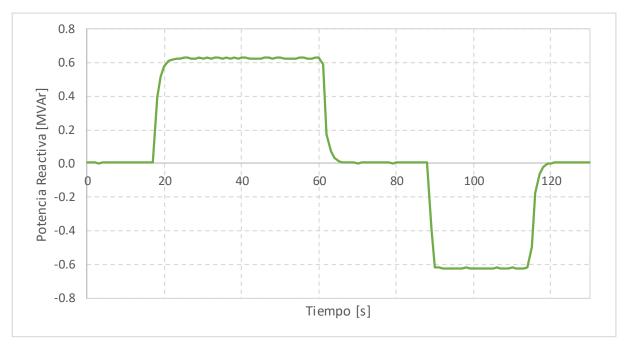


Gráfico 40. Control de potencia reactiva a nivel inversor. Media Carga.

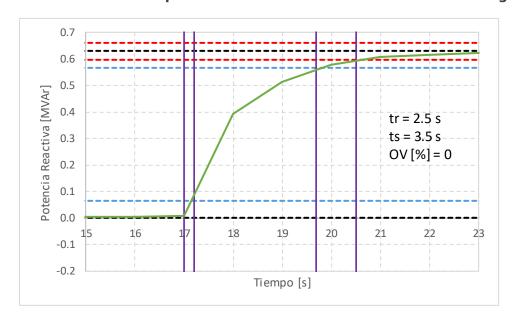
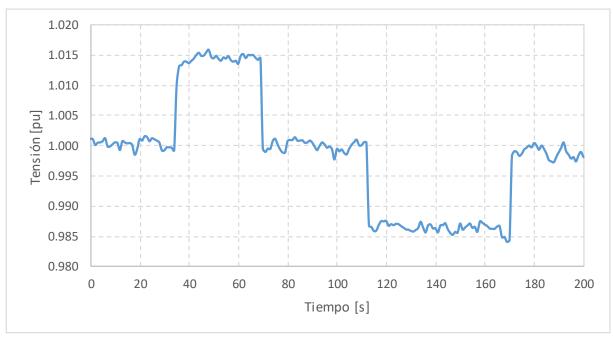



Gráfico 41. Control de potencia reactiva. Media Carga. Parámetros de desempeño.

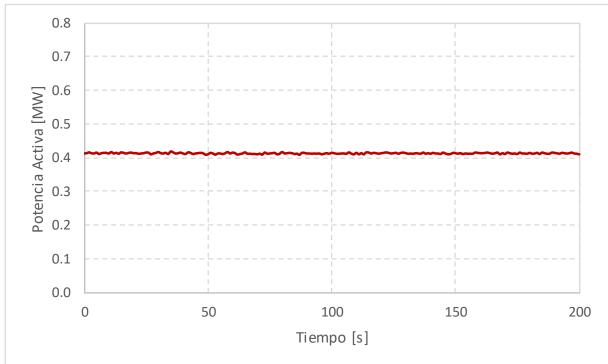
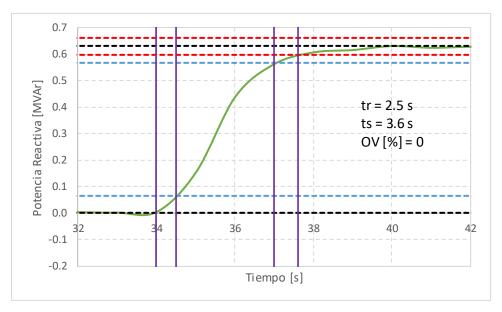
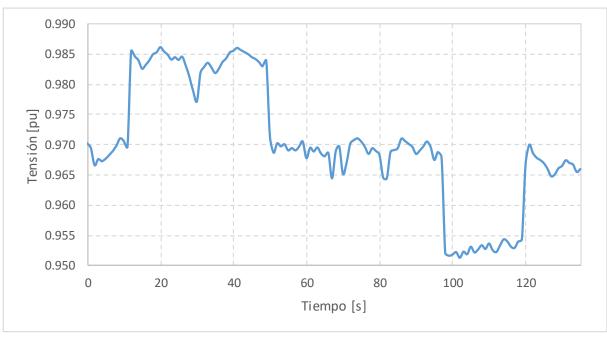
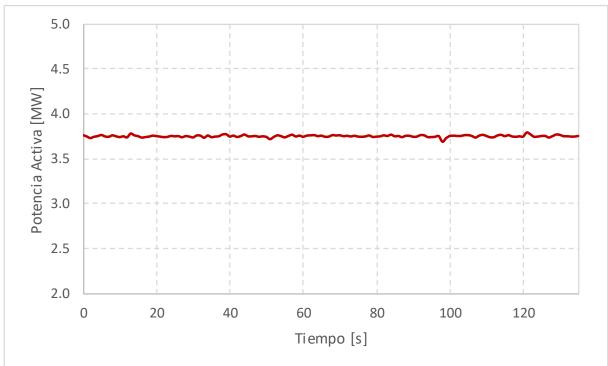


Gráfico 42. Control de potencia reactiva a nivel inversor. Baja Carga.




Gráfico 43. Control de potencia reactiva. Baja Carga. Parámetros de desempeño.


3.2.2 Inversor más lejano (INV 14)

a.1) Control de potencia reactiva (Control Q)

Para la realización de esta prueba, se varió la consigna de potencia reactiva del inversor en pasos de \pm 0.6 MVAr para alta, media y baja carga. Los resultados se muestran a continuación.

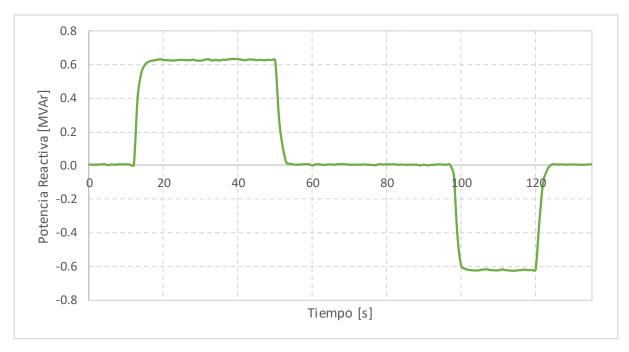


Gráfico 44. Control de potencia reactiva a nivel inversor. Alta Carga.

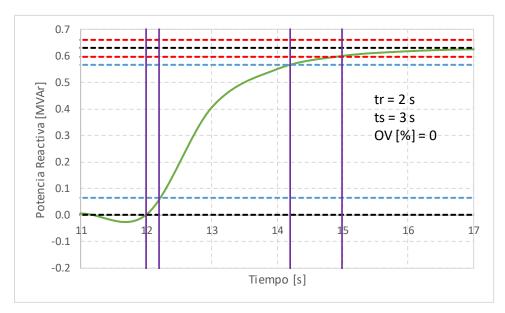
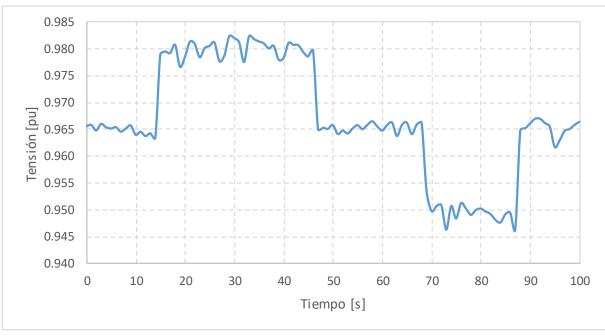
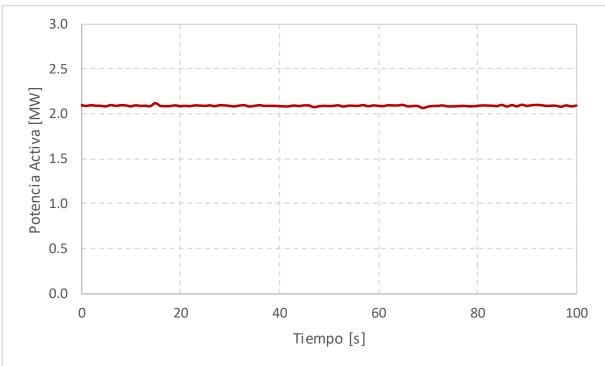




Gráfico 45. Control de potencia reactiva. Alta Carga. Parámetros de desempeño.

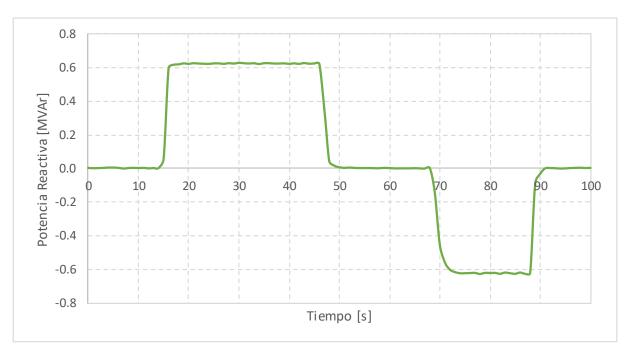


Gráfico 46. Control de potencia reactiva a nivel inversor. Media Carga. Variables temporales.

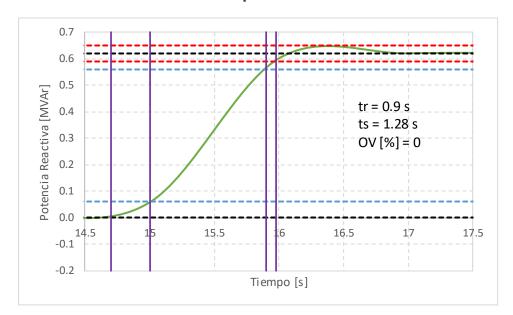
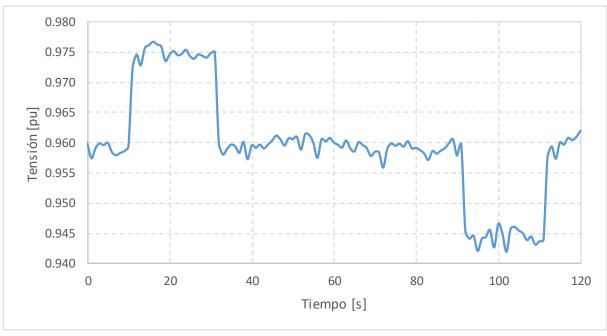
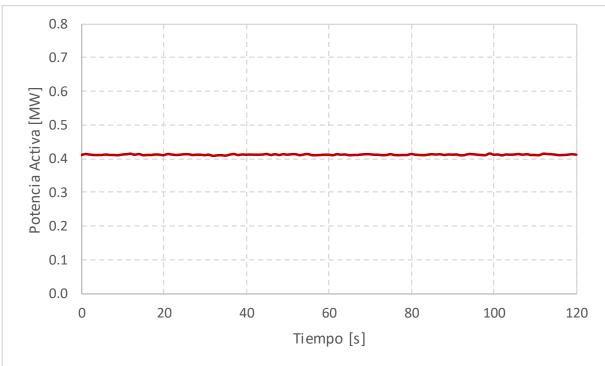




Gráfico 47. Control de potencia reactiva. Media Carga. Parámetros de desempeño.

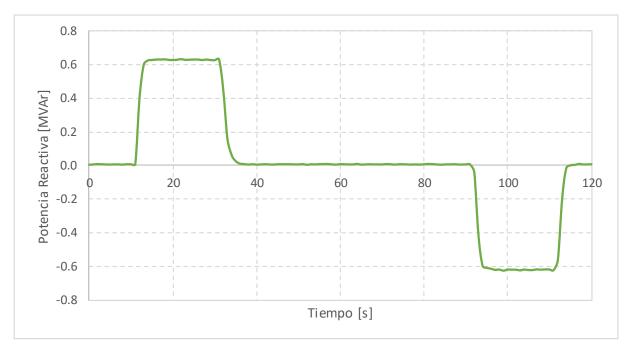


Gráfico 48. Control de potencia reactiva a nivel inversor. Baja Carga. Variables temporales.

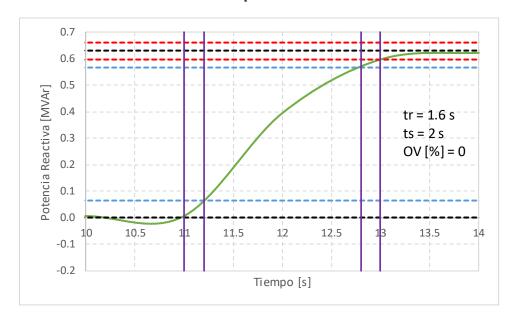


Gráfico 49. Control de potencia reactiva. Baja Carga. Parámetros de desempeño.

4. Conclusiones

En relación a los ensayos realizados en campo y descritos en el presente informe, se concluye que el resultado de las pruebas realizadas fue satisfactorio. Los ensayos llevados a cabo fueron ejecutados de acuerdo al protocolo confeccionado y a los requerimientos de la Norma Técnica y la guía de prestación de servicios complementarios de control de tensión.

- Se exploraron distintos puntos de la curva PQ teórica máxima.
- Se probó el correcto desempeño del control de planta en lo referido a la respuesta del control de potencia reactiva / tensión para distintos estados de carga, con un resultado satisfactorio para los distintos estados ensayados.

De lo anterior el PSFV Willka es apto para prestar servicios de control de tensión.

ANEXO

1. INFORMACIÓN TÉCNICA DEL EQUIPAMIENTO

1.1. Datos de los paneles solares

Los paneles solares del PSFV Willka son de marca Jinko Solar y sus principales características se muestran a continuación:

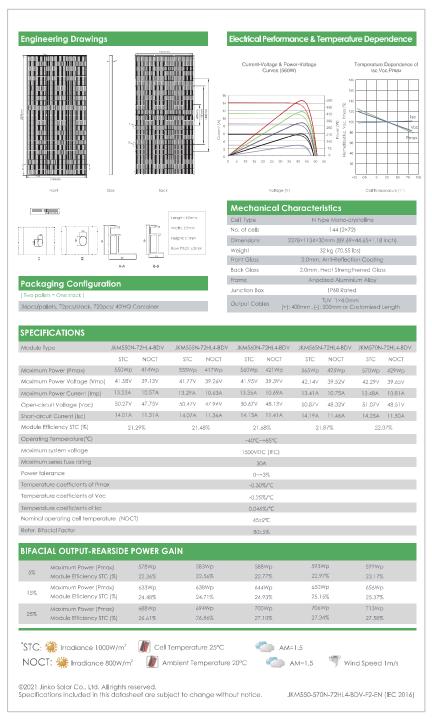


Gráfico 50. Características técnicas de los paneles solares.

1.2. Datos de los inversores

El parque solar fotovoltaico Willka cuenta con 26 inversores marca PowerElectronics modelo HEMK GEN 3 660V – FS4200K, cuyas características técnicas se muestran en la siguiente figura:

		FRAME 2	FRAME 3	FRAME 4			
REFERENCES		FS2101K	FS3151K	FS4200K			
	AC Output Power (kVA/kW) @40°C[1]	2100	3150	4200			
	AC Output Power (kVA/kW) @50°Cbl	1950	2925	3900			
	Max. AC Output Current (A) @40°C	1837	2756	3674			
оитрит	Operating Grid Voltage (VAC)		660V ±10%				
OUTFOI	Operating Grid Frequency (Hz)		50/60Hz				
	Current Harmonic Distortion (THDI)		< 3% per IEEE519				
	Power Factor (cosine phi)[i]	0.5 leading 0.5 la	agging adjustable / I tion at night	Reactive power injec-			
	DC Voltage Range ^[3]		934V - 1500V				
	Maximum DC Voltage		1500V	ű:			
	Number of Inputs	Up to 20	Up to 30	Up to 40			
INPUT	Max. DC Continuous Current (A)[4]	2295	3443	4590			
	Max. DC Short Circuit Current (A)[4]	3470	5205	6940			
	Number of MPPt (floating systems)	1	1	1, optionally 2 or 4			
	Number of Freemag DC/DC [4]	Up to 2 (Bus Plus Basic) or 4 (Bus Plus Advanced)					
recioletion.	Efficiency (Max) (n)	98.81%	98.84%	98.90%			
EFFICIENCY	Euroeta (ŋ)	98.45%	98.48%	98.65%			
	Dimensions [WxDxH] (ft)		9.8 x 6.6 x 7.2	0			
	Dimensions [WxDxH] (m)		3.0 x 2.0 x 2.2	87			
CABINET	Weight (lbs)	11465	11795	12125			
	Weight (kg)	5200	5350	5500			
	Type of Ventilation		Forced air cooling	}			
	Degree of Protection		NEMA 3R / IP55				
ENVIROMENT	Permissible Ambient Temperature s	-25°C to +60	0°C, >50°C / Active F	Power derating			
ENVIROMENT	Relative Humidity	4%	to 100% non-conde	nsing			
	Max. Altitude (above sea level)	2000m / >20	00m power derating	g (Max. 4000m)			
CONTROL	Communication Protocol		Modbus TCP				
	Power Plant Controller		Optional				
INTERFACE	Keyed ON/OFF Switch		Standard				
	Ground Fault Protection	GFDI ar	nd isolation monitor	ing device			
	Humidity Control	Active heating					
PROTECTIONS	General AC Protection & Disconn.		Circuit breaker				
	General DC Protection & Disconn.	Fuses, DC switch-disconnectors					
	Overvoltage Protection	Type 2 protection for AC and DC (optionally, Type 1+2)					
	Safety	UL 1741 / CSA 22.2	No.107.1-16 / IEC (52109-1 / IEC 62109-2			
CERTIFICATIONS & STANDARDS	Installation		NEC 2020 / IEC				
a STANDARDS	Utility Interconnect	IEEE 1547:2018 / UL 1741 SB / IEC 62116:2014					

Gráfico 51. Características generales de los inversores.

El consumo máximo de potencia en operación es de $P_{SSAA\,INV}=10~kW$ según lo manifestado por el fabricante y se utilizará este valor en el cálculo de los servicios auxiliares del parque. La curva de capabilidad de los inversores se muetra a continuación:

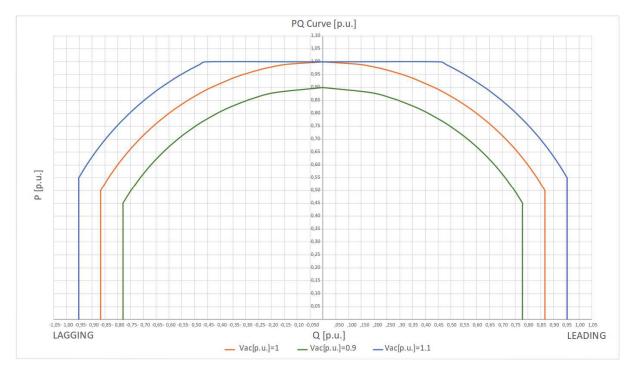


Gráfico 52. Curva de capabilidad de los inversores.

1.3. Transformador de unidades

* Anma Gücü (kVA)	: 8400	* Marka	: ELTAŞ
* Rated Power		* Brand	
* Anma Gerilimi (kV)	: 33 / 0.66-0.66	* Seri No	: YT-22-12977
* Rated Voltage		* Serial Number	
* Bağlantı Grubu	: Dy11y11	* Proje No:	: IEC.8400.33.AL.AY.60.H1
* Vector Group		* Project Number	
* Frekans (Hz)	: 50	Rapor No	: 22.YDT.1836
* Frequency		Report Number	
* Soğutma Tipi	: ONAN	* Tip	: ELT-8400 / 36
* Cooling		* Type	
* YG / AG Sargı İletkeni	: AL/AL	* İmal Tarihi	: 11/2022
* HV / LV Winding Conductor		* Production Date	
* Faz Sayısı	: 3		
* Number of Phases		 Çalışma sıcaklığı ve Anma gücü 	
* Yalıtım Sınıfı	: A	* Power Derating	
* Insulation Class		Çalışam Sıcaklığı / Ambient Temp. (°C)	Anma Gücü / Rated Power (kVA)
* Isınma Yağ/Sargı	: 60 / 65 K	40	8400
* Temp. Rise Oil / Winding			

* Anma Gücü (kVA)	: 4200	* Marka	: ELTAŞ
* Rated Power		* Brand	
* Anma Gerilimi (kV)	: 33 / 0.66	* Seri No	: YT-22-12989
* Rated Voltage		* Serial Number	
* Bağlantı Grubu	: Dy11	* Proje No:	: IEC.4200.33.AL.AY.60.H1
* Vector Group		* Project Number	
* Frekans	: 50 Hz	Rapor No	: 22.YDT.1903
* Frequency		Report Number	
* Soğutma Tipi	: ONAN	* Tip	: ELT-4200 / 36
* Cooling		* Type	
* YG / AG Sargı İletkeni	: AL/AL	* İmal Tarihi	: 11/2022
* HV / LV Winding Conductor		* Production Date	
* Faz Sayısı	: 3		
* Number of Phases		 Çalışma sıcaklığı ve Anma gücü 	
* Yalıtım Sınıfı	: A	* Power Derating	
* Insulation Class		Çalışam Sıcaklığı / Ambient Temp. (°C)	Anma Gücü / Rated Power (kVA)
* Isınma Yağ/Sargı	: 60 / 65 K	40	4200
* Temp. Rise Oil / Winding			

Kademe / Tap position								3			
		AKIM	I(A)		G	ERILI	M(V)		GUÇ(W)		(W)
		Curr	ent			Volta	qe			Pow	/er
U		73.2	234			1696.	80			111	80
V		73.5	00			1704.	50			103	10
W	73.783			1698.40		\neg	10970		70		
ORT (Avrg)		73.5	06		1699.90		\neg	Σ	:	32460	
Akım Düzeltme (Current Corr.)	0.	9996	636	5		iç Düzi ower (0.	.9993	32742
In : 73.481	Α	Un	:	2944.	31	V	Pk	:	32	438	W
Garanti Edilen/Gua	rantee	d Va	lues	5	Pk=		33	500		W	+ % 0
Pk (75 °C)	=				3617	74		W			
Garanti Edilen/Gua	rantee	ed Va	lues	5	%uk	usc=		8.50		±	% 10
% Uk/ <i>Usc</i> (75 °C) =				8.9	4					

1.4. Transformador principal

Aplicado (%)	Fase	Tensión (Vmed)	Tensión (Vrms)	Corriente (A)	_lo (%)	Pérdidas (W)
100	Media	32764,6	32738,4	1,109	0,053	54748,35

	Potencia (kVA): 120000,0										
Devanado	Tensión (V)	Corriente Fase (A)	Condición	Temperatura de Referencia (°C): 85,0			(°C): 85,0				
Alta	220000,0	314,918	Aplicación	Pérdidas (Óhmicas (W)	Impe	dancia (%)				
Baja	33000,0	1212,121	Corto Circuito	Alta:	152091,55	Indu	ctiva: 12,51				
				Baja:	135226,40	Res	istiva: 0,27				
	Factor Tp	Factor Tc	Factor Pe	Suma:	287317,95						
	183,0	80,0	14640,0	Pérdidas Adicionales (W): 37700,15		00,15					
	Temperatur	a Ambiente (°C): 20,0			Resum	en					
Fases	Tensión (V)	Corriente Línea (A)	Pérdidas (W)	Corriente d	le Excitación [I0]	(%):	0,053				
Fase 1	8491,2	167,600	44505,60	Pérdid	as en Vacío [P0]	(W):	54748,35				
Fase 2	8564,4	167,280	16689,60	Pérdida	s en Carga [Pe]	(W):	325018,10				
Fase 3	8326,5	168,080	17128,80	F	érdida Total [Pt]	(W):	379766,45				
Media	14654,6	167,680	78324,00		Impedancia [Ez]	(%):	12,51				

Tabla 3. Especificación del transformador de potencia 220/33 kV de la SE Willka.

Descripción	Valor	Unidad
Tensión Nominal	220/33	kV
Potencia Nominal	90/120 (ONAN/ONAF)	MVA
Grupo de Conexión	YNd1	
Impedancia de cortocircuito	12.51	%
Pérdidas en cobre	3255	kW
Pérdidas en vacío	54.8	kW

1.5. Cables de media tensión

Tabla 4. Especificaciones de los tramos de cables del sistema colector.

Circuito	Tramo	Long	Cantidad y	Circuito	Tramo	Long	Cantidad y
		[km]	Secc [mm²]			[km]	Secc [mm²]
	SE-PV11	0.78	2x400		SE-PV02	1.032	2x400
1	PV11-PV12	0.335	1x400	4	PV02-PV06	1.091	1x400
	PV12-PV15	1.187	1x185		PV06-PV08	0.469	1x185
	SE-PV10	0.49	2x400		SE-PV01	0.735	2x400
2	PV10-PV13	1.084	1x400	5	PV01-PV05	1.170	1x400
	PV13-PV14	0.436	1x185		PV05-PV07	0.486	1x185
	SE-PV09	0.149	2x400				
3	PV09-PV03	1.211	2x185				
	PV03-PV04	0.303	1x185]			

Tabla 5. Parámetros eléctricos de los cables del sistema colector.

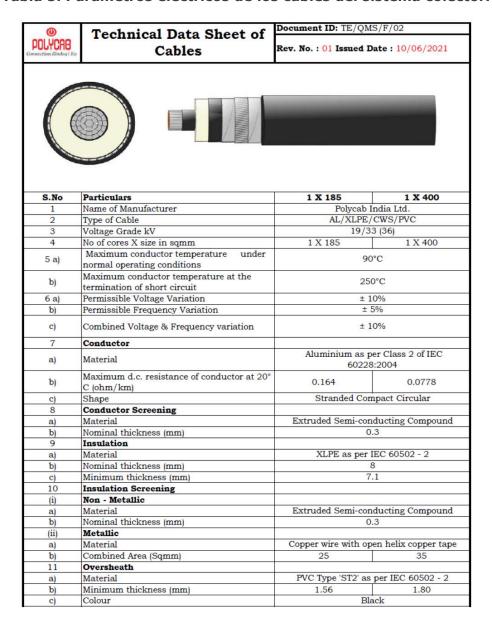


Tabla 6. Colector equivalente del PSFV Willka.

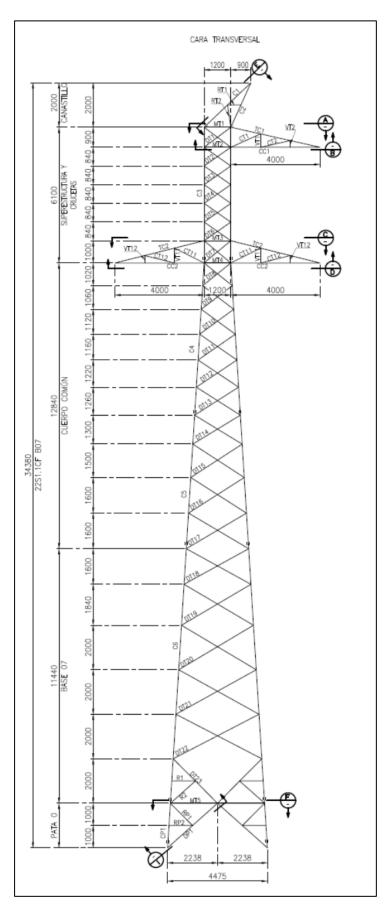
r1	x1	B1	r0	x 0	B0
[Ω/km]	[Ω/km]	[µS/km]	[Ω/km]	[Ω/km]	[μS/km]
0.009289	0.007891	1534.505	0.018673	0.005381	1534.505

1.6. Reactor zig-zag para neutro artificial

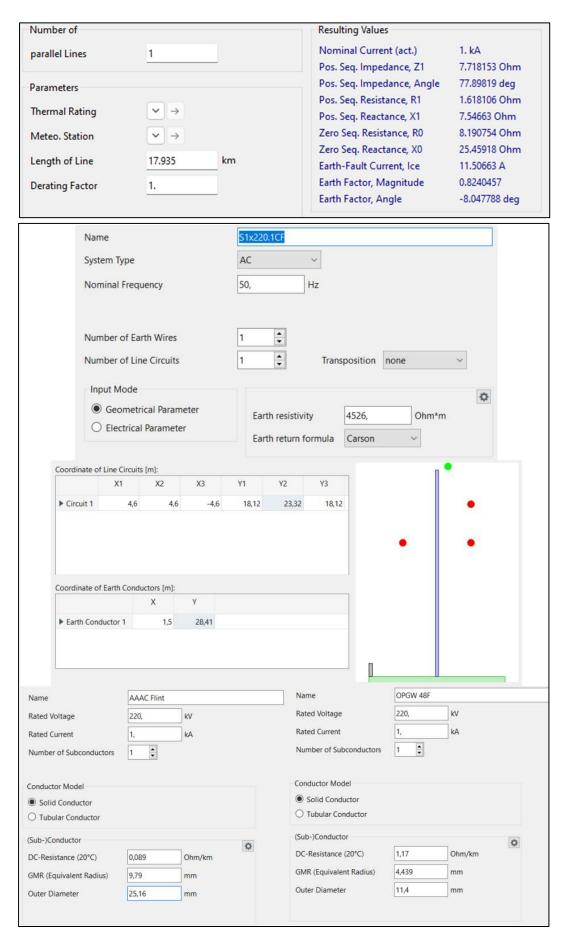
Tabla 7. Características técnicas principales del reactor de neutro.

3.0	CARACTERÍSTICAS ELÉCTRICAS DE SERVICIO			
3.2	Patio de 33 kV			
3.2.1	Tensión nominal de servicio	kV	33	33
3.2.2	Tensión máxima de servicio	kV	36	36
3.2.3	Frecuencia	Hz	50	50
3.2.4	Número de Fases		3	3
3.2.5	Nivel básico de impulso de la aislación (BIL)	kVcr	170	170
3.2.6	Clase de aislamiento a la altura de instalación	kV	36	36
4.0	CARACTERÍSTICAS TÉCNICAS			
4.1	Tensión máxima del equipo	kV	36	36
4.3	Potencia de cortocircuito asignada	kVA	Por Fabricante	9527
4.4	Potencia permanente	kVA	550	550
4.5	Corriente asignada de falla a tierra en el neutro soportada por 10s	А	500	500
4.6	Duración del cortocircuito	seg	10	10
4.7	Impedancia de secuencia cero en base a 550 kVA	Ω/Fase	13,62	13,62
4.8	Corriente asignada permanente en fase	А	16,67	16,67
4.9	Corriente asignada de falla en fases	A	166,7	166,7
4.10	Pérdidas en vacío	W	Por Fabricante	1400
4.11	Pérdidas totales bajo carga	W	Por Fabricante	2800

1.7. Línea de interconexión


La planta solar se vincula a la SE Parinacota 220 kV mediante una línea simple circuito de 17,935 km. A continuación, se detallas características de este enlace y su modelado.

ÍTEM	DESCRIPCIÓN	UNIDAD	ESPECIFICADO	OFRECIDO
D.2	Nombre código		FLINT	FLINT
D.3	Normas que cumple		B 398 B 399	B 398 B 399
D.4	Área de la sección transversal nominal	mm²	375,4	375,4
D.5	Diámetro exterior nominal	mm	25,16	25,16
D.6	Diámetro de las hebras	mm	3,59	3,59
D.7	Peso unitario nominal	kg/m	1,034	1,03
D.8	Resistencia mínima a la rotura	kg	11067	11067
D.9	Número de hebras		37	37
D.10	Radio medio geométrico	m	0,00966	0,00966
D.11	Módulo de elasticidad final	kg/mm2	6187	6187
D.12	Coeficiente de dilatación térmica	1/°C	23x10-6	23x10-6
D.13	resistencia eléctrica en corriente alterna 50 hz a 25 °C	ohm/km	0,090114	0,091882
D.14	Dirección del cableado		Mano derecha	Mano derecha
D.15	Tensión de operación de la línea eléctrica		220	220


TEM	DESCRIPCIÓN	UNIDAD	ESPECIFICADO	OFRECIDO
D.2	Tipo de cable		OPGW	OPGW
D.3	Normas con que cumple		ASTM B-415, IEEE STD 1138	ASTM B-415, IEEE STD 1138
D.4	Diámetro exterior nominal	mm	≤ 11.4	11.4
D.5	Peso unitario nominal	kg/km	476.6	476.6
D.6	Resistencia mínima a la rotura	kg	Por Proveedor	8684
D.7	Número de alambres	c/u	Por Proveedor	6
D.8	Dirección del cableado		Izquierda	Izquierda
D.9	Módulo de elasticidad final promedio (3% alargamiento)	kg/mm²	Por Proveedor	16531
D.10	Coeficiente de dilatación lineal	1/°C	Por Proveedor	13*10 ⁻⁶
D.11	Resistencia eléctrica en corriente alterna 50 Hz a 25°C	ohm/km	Por Proveedor	1.345
D.12	Capacidad de cortocircuito mínima	kA2s	19.7	19.7
E	ALAMBRES COMPONENTES DEL CABLE OPGW			
E.1	Normas con que cumple		ASTM B-416	ASTM B-416
E.2	Diámetro nominal	mm	Por Proveedor	3.8
E.3	Espesor mínimo de la capa de aluminio	mm	Por Proveedor	0.19
E.4	Alargamiento promedio mínimo en 254 mm	%	Por Proveedor	1.5
E.5	Resistencia mínima a la rotura	kg	Por Proveedor	1446.6

	Fase A	Fase B	Fase C	CG
Altura Cruceta [m]	26.28	31.48	26.28	34.38
Long CA [m]	2.19	2.19	2.19	-
Flecha [m]	8.95	8.95	8.95	8.95
Alt Media [m]	18.12	23.32	18.12	28.41

2. VERIFICACIÓN DE AJUSTES

2.1. Lógicas de inyección de corriente y LVRT

En los siguientes gráficos se presentan la curva FRT del inversor Power Electronics HEMK GEN 3 (en bornes del inversor) y la comparación entre esta y el requisito fijado en la NT (en el punto de conexión a la red).

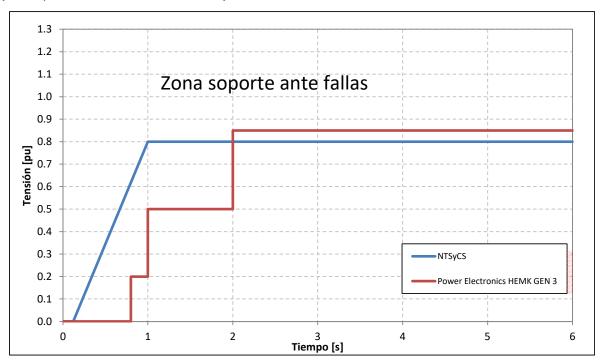


Gráfico 53. Curva límite tensión-tiempo Power Electronics HEMK GEN 3.

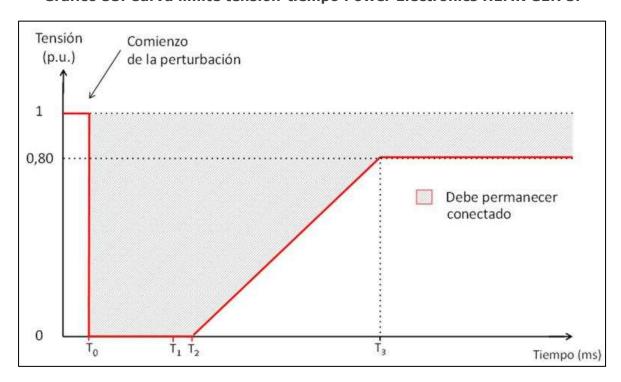


Gráfico 54. Curvas límite tensión-tiempo norma NT en punto de conexión.

Siendo:

T0 = 0 [ms], tiempo de inicio de la falla.

T1 = tiempo máximo de despeje de falla establecido en el Artículo 5-45, según el nivel de tensión del Punto de Conexión.

T2 = T1+20 [ms].

T3 = 1000 [ms].

Durante los huecos de tensión, el control cambia del modo normal (control de potencia activa y reactiva) al modo de control de corriente de rotor. Esto habilita al inversor a realizar soporte de tensión inyectando corriente reactiva a la red. La corriente reactiva en bornes del generador se encuentra configurada de acuerdo al Gráfico 55.

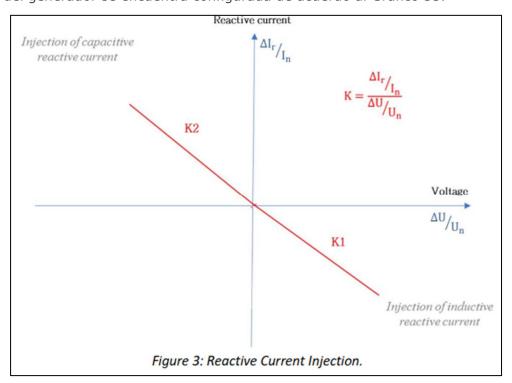


Gráfico 55. Inyección de corriente reactiva ante huecos de tensión. Power Electronics HEMK GEN 3.

Low Voltage Ride Through Parameters*			
G4.3.1.1	LVRT Model Enable*	Mode 1	-
G4.3.1.2	LVRT Threshold*	90,0	%
G4.3.1.4	LVRT Configuration Mode*	Is prev + kdVdir	-
G4.3.2.2	Vset	100,0	%
G4.3.2.7	K DIR	2	
G4.3.2.9	K INV	0	
G4.3.3.3	Hysteresis %*	5	%
G4.3.3.7	ID Recover Ramp	3000,0	%/s

High Voltage Ride Through Parameters*				
G4.4.1.1	OVRT Model Enable*	Mode 1	-	
G4.4.1.2	OVRT Threshold*	110,0	%	
G4.4.1.4	OVRT Configuration Mode*	Is prev + kdVdir	-	
G4.4.2.2	Vset	89,9	%	
G4.4.2.7	K Factor*	2	-	
G4.4.3.2	Hysteresis %*	5	%	
G4.4.3.7	ID Recover Ramp	Disabled	%	

2.2. Ajuste de protecciones

2.2.1 Protección de tensión

En las siguientes gráficos y tablas se muestra el ajuste de protecciones de tensión de los inversores, según la información proporcionada por el fabricante:

Tabla 8. Ajuste de protección de tensión.

	High Input Voltage		
G5.1.2.1	High V Enable	XX	000
G5.1.2.2	Slow Protection	110,00	%
G5.1.2.3	Delay for Slow Protection (0.0 – 6550.0)	1,00	sec
G5.1.2.4	Fast Protection	120,00	%
G5.1.2.5	Delay for Fast Protection (0.00-655.00)	0,20	sec
G5.1.2.6	Fast 2 Protection	Disabled	%
G5.1.2.7	Delay for Fast 2 Protection (0.00-655.00)	Disabled	sec
G5.1.2.8	Very Fast Protection	Disabled	%
G5.1.2.9	Delay for Very Fast Protection (0.000-65.500)	Disabled	sec
G5.1.2.10	Second Very Fast 2 Protection	Disabled	%
G5.1.2.11	Delay Very Fast 2 Protection (0.000-65.500)	Disabled	sec

G5.1.1.1	Low Input Voltage	XX	XXX00	
G5.1.1.2	Slow Protection	85,00	%	
G5.1.1.3	Delay for Slow Protection (0.0 – 6550.0)	2,00	sec	
G5.1.1.4	Fast Protection	50,00	%	
G5.1.1.5	Delay for Fast Protection (0.00-655.00)	1,00	sec	
G5.1.1.6	Fast 2 Protection	20,00	%	
G5.1.1.7	Delay for Fast 2 Protection (0.00-655.00)	0,80	sec	
G5.1.1.8	Very Fast Protection	Disabled	%	
G5.1.1.9	Delay for Very Fast Protection (0.000-65.500)	Disabled	sec	
G5.1.1.10	Second Very Fast 2 Protection	Disabled	%	
G5.1.1.11	Delay Very Fast 2 Protection (0.000-65.500)	Disabled	sec	

2.2.2 Protección de frecuencia

En las siguientes gráficos y tablas se muestra el ajuste de protecciones de tensión de los inversores, según la información proporcionada por el fabricante:

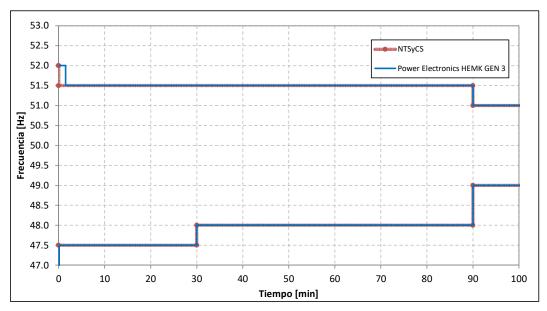


Gráfico 56. Ajuste de protección de frecuencia.

Tabla 9. Ajuste de protección de frecuencia.

Low Input Frequency				
G5.1.3.1	Low f Enable		XXX00	
G5.1.3.2	Slow Protection	49,00	Hz	
G5.1.3.3	Delay for Slow Protection (0.0 - 6550.0)	5400,00	Second	
G5.1.3.4	Fast Protection	48,00	Hz	
G5.1.3.5	Delay for Fast Protection (0.00-655.00)	1800,00	Second	
G5.1.3.6	Fast 2 Protection	47,50	Hz	
G5.1.3.7	Delay for Fast 2 Protection (0.00-655.00)	0,10	Second	
G5.1.3.8	Very Fast Protection	Disabled	Hz	
G5.1.3.9	Delay for Very Fast Protection (0.000-65.500)	Disabled	Second	
G5.1.3.10	Second Very Fast 2 Protection	Disabled	Hz	
G5.1.3.11	Delay Very Fast 2 Protection (0.000-65.500)	Disabled	Second	

High Input Frequency				
G5.1.4.1	High f Enable		XXX00	
G5.1.4.2	Slow Protection	51,00	Hz	
G5.1.4.3	Delay for Slow Protection (0.0 – 6550.0)	5400,00	Second	
G5.1.4.4	Fast Protection	51,50	Hz	
G5.1.4.5	Delay for Fast Protection (0.00-655.00)	90,00	Second	
G5.1.4.6	Fast 2 Protection	52,00	Hz	
G5.1.4.7	Delay for Fast 2 Protection (0.00-655.00)	0,10	Second	
G5.1.4.8	Very Fast Protection	Disabled	Hz	
G5.1.4.9	Delay for Very Fast Protection (0.000-65.500)	Disabled	Second	
G5.1.4.10	Second Very Fast 2 Protection	Disabled	Hz	
G5.1.4.11	Delay Very Fast 2 Protection (0.000-65.500)	Disabled	Second	

3. ARCHIVOS ADJUNTOS ENTREGADOS

Forman parte integral del presente informe los siguientes archivos que se entregan en forma adjunta:

Registro de ensayos: Registros_PSFV_Willka_SSCC.rar

Todos los registros de ensayos del presente informe son entregados adjuntos en formato ".csv".