

INFORME DE ENSAYOS DE VERIFICACIÓN DE SERVICIOS COMPLEMENTARIOS DE CONTROL TERCIARIO DE FRECUENCIA PSFV WILLKA

Informe Técnico

Preparado para:



Julio - 2025



# Tabla de Contenidos

| TAB | LA D  | E CONTENIDOS                                                     | 2              |
|-----|-------|------------------------------------------------------------------|----------------|
| ÍND | ICE I | DE TABLAS Y GRÁFICOS                                             | 4              |
| ABR | EVIA  | ATURAS Y ACRÓNIMOS                                               | 5              |
| REG | ISTR  | O DE COMUNICACIONES                                              | 6              |
| SEC | CIÓN  | PRINCIPAL                                                        | 7              |
|     | 1. I  | NTRODUCCIÓN                                                      | 7              |
|     | 2. D  | DESCRIPCIÓN DEL PARQUE FOTOVOLTAICO                              | 7              |
|     | 3. M  | 1ARCO NORMATIVO                                                  | 11             |
|     | 4. D  | DESCRIPCIÓN DE LOS COMPONENTES PRINCIPALES DE LA PLAN            | TA 12          |
|     |       | '                                                                | 12<br>12<br>12 |
|     | 4.2.  | Inversores                                                       | 12             |
|     | 5. D  | DESCRIPCIÓN DE LOS ENSAYOS                                       | 13             |
|     | 5.1   | Verificación del gradiente de incremento / reducción de carga    | 14<br>14       |
|     | 5.2.  | Modificación de parámetros y limitaciones del sistema de control | 15             |
|     | 5.3.  | Parámetros de partida en frio del parque                         | 16             |
|     | 6. C  | CONCLUSIONES                                                     | 17             |
| ANE | хо    |                                                                  | 18             |
|     | 1. I  | NFORMACIÓN TÉCNICA DEL EQUIPAMIENTO                              | 18             |
|     | 1.1.  | Datos de los paneles solares                                     | 18             |
|     | 1.2.  | Datos de los inversores                                          | 19             |
|     | 1.3.  | Transformador de unidades                                        | 20             |
|     | 1.4.  | Transformador principal                                          | 21             |
|     | 1.5.  | Cables de media tensión                                          | 22             |
|     | 1.6.  | Reactor zig-zag para neutro artificial                           | 23             |
|     | 1.7.  | Línea de interconexión                                           | 24             |



| 2. VE | RIFICACIÓN DE AJUSTES                    | 28 |
|-------|------------------------------------------|----|
| 2.1.  | Lógicas de inyección de corriente y LVRT | 28 |
| 2.2.  | Ajuste de protecciones                   | 31 |
| 2.2.1 | Protección de tensión                    | 31 |
| 2.2.2 | Protección de frecuencia                 | 31 |
| 3. AF | RCHIVOS ADJUNTOS ENTREGADOS              |    |



# Índice de tablas y gráficos

| Tabla 1. Rango de ajuste de parámetros CTF16                                                     |
|--------------------------------------------------------------------------------------------------|
| Tabla 2. Parámetros de partida PSFV Wilka16                                                      |
| Tabla 3. Especificación del transformador de potencia 220/33 kV de la SE Willka21                |
| Tabla 4. Especificaciones de los tramos de cables del sistema colector22                         |
| Tabla 5. Parámetros eléctricos de los cables del sistema colector23                              |
| Tabla 6. Colector equivalente del PSFV Willka                                                    |
| Tabla 7. Características técnicas principales del reactor de neutro                              |
| Tabla 8. Ajuste de protección de tensión                                                         |
| Tabla 9. Ajuste de protección de frecuencia                                                      |
|                                                                                                  |
| Gráfico 1. Ubicación geográfica del PSFV Willka                                                  |
| Gráfico 2. Esquema unilineal de la SE Willka                                                     |
| Gráfico 3. Esquema unilineal del sistema colector                                                |
| Gráfico 4. Curva PQ del inversor                                                                 |
| Gráfico 5. Gradiente de Incremento de carga de 10 %/min14                                        |
| Gráfico 6. Gradiente de Reducción de carga de 10 %/min14                                         |
| Gráfico 7. Gradiente de Incremento de carga de 20 %/min14                                        |
| Gráfico 8. Gradiente de Reducción de carga de 20 %/min15                                         |
| Gráfico 9. Gradiente de Incremento de carga de 70 %/min                                          |
| Gráfico 10. Gradiente de Reducción de carga de 70 %/min15                                        |
| Gráfico 11. Características técnicas de los paneles solares                                      |
| Gráfico 12. Características generales de los inversores                                          |
| Gráfico 13. Curva de capabilidad de los inversores                                               |
| Gráfico 14. Curva límite tensión-tiempo Power Electronics HEMK GEN 329                           |
| Gráfico 15. Curvas límite tensión-tiempo norma NT en punto de conexión29                         |
| Gráfico 16. Inyección de corriente reactiva ante huecos de tensión. Power Electronics HEMK GEN 3 |
| Gráfico 17. Ajuste de protección de frecuencia                                                   |



# Abreviaturas y acrónimos

CEN: Coordinador Eléctrico Nacional

CNE: Comisión Nacional de Energía

CDC: Centro de despacho del coordinador

**ERNC**: Energía Renovables No Convencional

NTSyCS: Norma Técnica de Seguridad y Calidad de Servicio

PE: Parque Eólico

**PSFV:** Parque solar fotovoltaico

SE: Subestación eléctrica

AT: Alta tensión

MT: Media tensión

BT: Baja tensión

**ONAN:** Oil Natural Air Natural

**ONAF:** Oil Natural Air Forced

SEN: Sistema Eléctrico Nacional

RCB: Regulador Bajo Carga

PMU: Power Management Unit

CPF: Control primario de frecuencia

CT: Control de tensión

CTF: Control Terciario de frecuencia

PA: Partida Autónoma



# Registro de comunicaciones

Registro de las actividades, comunicaciones y aprobación de informes.

| N° | <b>Fecha</b><br>dd/mm/año | Preparó | Revisó | Aprobó | Observaciones   |  |
|----|---------------------------|---------|--------|--------|-----------------|--|
| 0  | 08/07/25                  | РВ      | FG     | FM     | Emisión Inicial |  |



# Sección principal

#### 1. Introducción

En el siguiente informe se describen los resultados obtenidos en los ensayos de verificación del servicio complementario de control terciario de frecuencia realizados en el parque solar fotovoltaico Willka, durante los días 13 a 23 de mayo, con el objetivo de dar cumplimiento a las exigencias establecidas en la norma técnica de servicios complementarios vigente.

Las verificaciones anteriormente señaladas se realizan siguiendo los lineamientos estipulados en las "Guía de Verificación Servicios Complementarios Control de Frecuencia" expedida por el Coordinador Eléctrico Nacional.

### 2. Descripción del parque fotovoltaico

El PSFV Willka se encuentra emplazado en la región de Arica y Parinacota en la zona norte de Chile. Está formado por 26 Inversores marca Power Electronics, modelo HEMK GEN 3 660 V – FS4200K de una capacidad nominal de 4.2 MVA cada uno, siendo la potencia instalada de 109,2 MVA (26x4,2 MVA). La Potencia Neta comprometida en el punto de conexión es de 98 MW.

Los 26 inversores se distribuyen en 15 centros de transformación de los cuales 11 contienen 2 inversores cada uno y el resto está formado por un inversor. La distribución en media tensión se realiza mediante un sistema colector desarrollado en 33 kV formado por 5 circuitos que colectan la potencia de los 15 centros de transformación. Los centros de transformación formados por dos inversores se conectan a la red mediante transformadores de 3 arrollamientos de 33/0,66/0,66 kV de una potencia de 8,4/4,2/4,2 MVA. Los centros de transformación formados por un inversor se conectan a la red de media tensión mediante transformadores de dos arrollamientos de 33/0,66 kV y una potencia de 4,2 MVA.

En el Gráfico 1 se muestra la ubicación geográfica del parque, en el Gráfico 2 el esquema unilineal de la SE Willka y en el Gráfico 3 muestra un esquema unilineal del sistema colector en 33 kV.



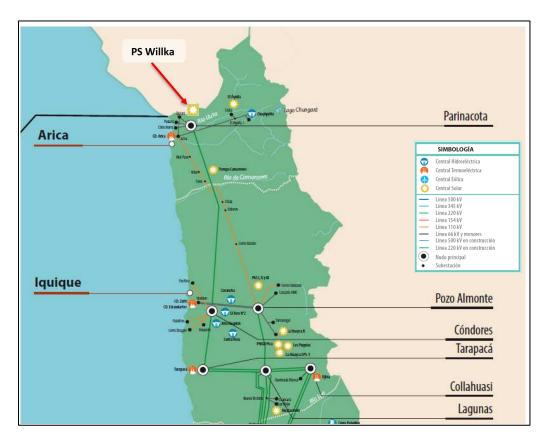



Gráfico 1. Ubicación geográfica del PSFV Willka.



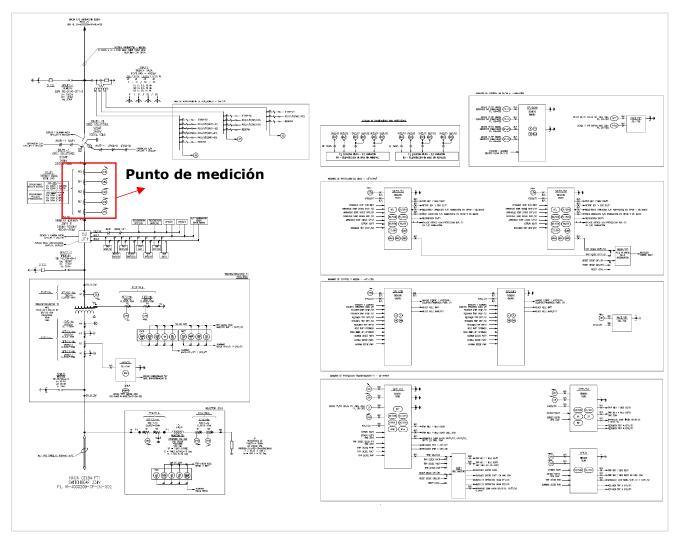



Gráfico 2. Esquema unilineal de la SE Willka.



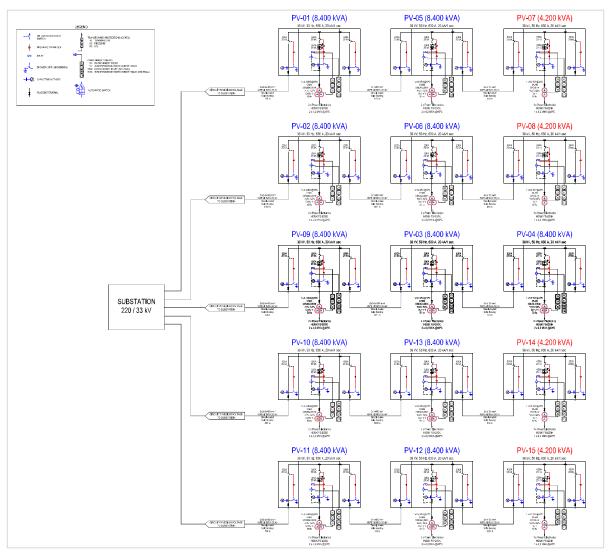



Gráfico 3. Esquema unilineal del sistema colector.



#### 3. MARCO NORMATIVO

Los ensayos que se detallan a continuación siguen los requerimientos establecidos en el Anexo Técnico: Verificación De Instalaciones Para La Prestación SSCC de la Norma Técnica de Servicios Complementarios (NTSSCC) vigente, y en la Guía de Verificación de Servicios Complementarios de Control de Frecuencia, a los fines de verificar la prestación del recurso técnico de instalaciones para la prestación del Servicio Complementario de Control Terciario de Frecuencia (CTF).

En particular, los sistemas de control de las plantas se deben ensayar para cumplir con los requerimientos establecidos a continuación.

ANEXO TÉCNICO: VERIFICACIÓN DE INSTALACIONES PARA LA PRESTACIÓN SSCC, TÍTULO IX. VERIFICACION DE RECURSOS TÉCNICOS ASOCIADOS A INSTALACIONES PARA EL SC DE CTF.

#### Artículo 28 Objetivo de los ensayos

La verificación de prestación del recurso técnico de instalaciones para la prestación del SC de CTF tiene por objetivo verificar la respuesta de dicha instalación ante instrucciones de modificar su intercambio de potencia de acuerdo con el requerimiento del servicio.

El titular de toda instalación que participe en el SC de CTF deberá realizar ensayos y/o mediciones a efectos de demostrar que la instalación dispone de los equipos y medios requeridos por el Coordinador para efectuar un adecuado monitoreo de la disponibilidad y desempeño del servicio CTF, de acuerdo con lo establecido en la presente norma, y los Artículos 4-17 y 4-27 de la NTSyCS.

# Artículo 29 Ensayos para verificación de recursos técnicos asociados a instalaciones para la prestación del SC de CTF

Para la verificación de recursos técnicos asociados a instalaciones para la prestación del SC de CTF, mediante mediciones en terreno, se deberá verificar como mínimo que:

- a. Para distintos valores de reserva para CTF, verificar que la instalación y su recurso técnico cumple con los tiempos establecidos en la Resolución SSCC.
- b. Medir el rango en el que puede ser ajustada la tasa de reducción y toma de carga de la instalación.



# 4. Descripción de los componentes principales de la planta

#### 4.1. Control de planta

El control del PSFV Willka se realiza a través de un único PPC (Power Plant Controller), siendo la barra de control del parque la situada eléctricamente en la barra de 220 kV de la SE Willka. El PPC puede operar en los siguientes modos de control:

#### 4.1.1 Funciones de control de potencia activa

- Control de potencia activa de 0-100%: Permite ajustar la consigna de potencia activa a un valor determinado, el cual es distribuido entre todos los inversores. Si se activa la función de limitación de rampa, tanto la rampa de bajada como de subida o toma de carga quedarán limitadas a una tasa de crecimiento determinada (en %/min). Para el caso del PSFV Willka esta tasa estaba configurada en 19,6 MW/min (20%/min respecto a la potencia base de 98 MW), la cual cumple con la máxima tasa de toma de carga exigida en la norma técnica NTSyCS.
- Control de frecuencia: Esta función contempla la respuesta de la potencia activa en función a las fluctuaciones de frecuencia respecto a la frecuencia nominal (50 Hz). La respuesta del parque estará dada por una curva de potencia frecuencia que posee un estatismo y una banda muerta. Para el caso particular del PSFV Willka este posee una banda muerta configurada en ±200 mHz, con un estatismo de 5%.

#### 4.1.2 Funciones de control de potencia reactiva

- Control de tensión VQ: permite definir un valor de consigna de tensión, controlando la inyección de potencia reactiva según una recta VQ predefinida (estatismo V/Q). Se puede configurar la pendiente y la banda muerta de dicha recta. Para el PSFV Willka la banda muerta es de 0% y el estatismo estaba configurado en 5%.
- Control de potencia reactiva: Permite definir un valor de consigna de potencia reactiva en el punto de conexión, la cual es distribuida entre todas las unidades. Este tipo de control permite además agregar una limitación de la rampa de subida y de bajada que para el caso del PSFV Willka estaba configurada en 10 MVAr/min.
- **Control de factor de potencia:** Permite definir un valor de consigna de factor de potencia en el punto de conexión, controlando la inyección de potencia reactiva para mantenerlo constante.

#### 4.1.3 Operación de la planta sin recurso primario

Se aclara en este informe que la planta puede operar sin recurso primario, es decir, la función Q night se encuentra habilitada.

#### 4.1.4 Configuración N-1 inversores desde el control de planta

Se aclara en este informe que desde el PPC de la planta no es posible apagar
 N-1 inversores.

#### 4.2. Inversores

En el siguiente gráfico se muestra la curva de capabilidad del inversor TBEA modelo TC3750KF:



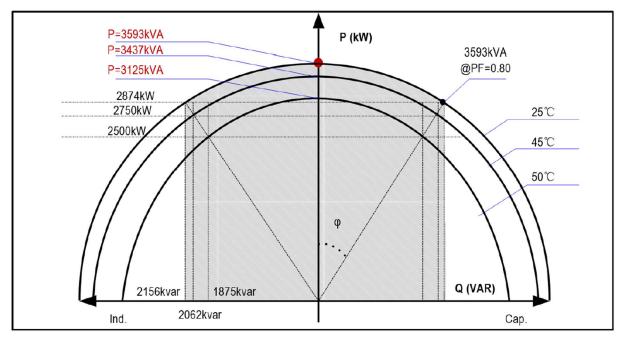



Gráfico 4. Curva PQ del inversor.

### 5. Descripción de los Ensayos

Se realizaron ensayos para verificar la respuesta del control de potencia activa de la planta. Desde el SCADA se cambió la consigna de potencia activa en el sistema de control para evaluar tanto la rampa de bajada como la rampa de subida de potencia de la central, desde potencia máxima hasta el mínimo técnico.

Se probaron las tasas 10 % /min, 20 % /min y 70%/min, registrando la potencia activa en el punto de conexión, verificando que se cumplan las tasas programadas y que la evolución en el tiempo fuese estable.

Luego de finalizadas las pruebas, se configuró nuevamente la tasa normal de funcionamiento de la planta, que en el caso del PSFV Tamaya es de 10 %/min, la cual cumple con la tasa máxima de toma de carga establecida en la normativa NTSyCS.

#### 5.1. Verificación del gradiente de incremento / reducción de carga

El ensayo se realizó desde la potencia máxima disponible (75 MW) hasta el mínimo técnico que en el caso del PSFV Willka es de 1.7 MW. A continuación, en Gráfico 5, Gráfico 6, Gráfico 7 y Gráfico 8, se muestran los resultados obtenidos para las distintas pendientes de incremento / reducción de carga ensayadas:



#### 5.1.1 Ensayo de tasa de variación de potencia activa de 10 %/min

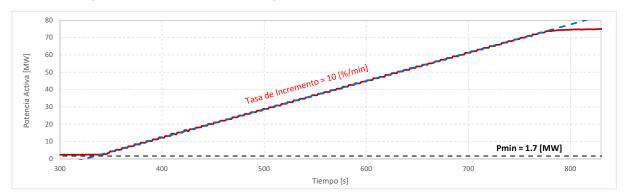



Gráfico 5. Gradiente de Incremento de carga de 10 %/min.

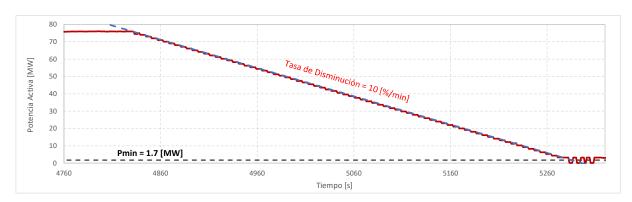



Gráfico 6. Gradiente de Reducción de carga de 10 %/min.

#### 5.1.2 Ensayo de tasa de variación de potencia activa de 20 %/min

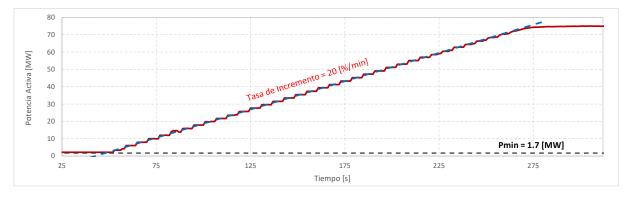



Gráfico 7. Gradiente de Incremento de carga de 20 %/min.



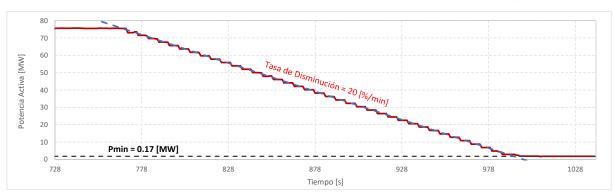



Gráfico 8. Gradiente de Reducción de carga de 20 %/min.

#### 5.1.3 Ensayo de tasa de variación de potencia activa de 70 %/min



Gráfico 9. Gradiente de Incremento de carga de 70 %/min.



Gráfico 10. Gradiente de Reducción de carga de 70 %/min.

A partir de los gráficos anteriores, se puede concluir que el parque responde correctamente a las pendientes consideradas y la respuesta es estable para todo el tiempo que duró la prueba.

#### 5.2. Modificación de parámetros y limitaciones del sistema de control

Como pudo observarse de las pruebas realizadas las pendientes configuradas coinciden con la respuesta analizada. Los cambios en la pendiente del control de potencia activa se realizan desde el sistema SCADA de la central por el operador.

En la siguiente tabla se muestra el rango de ajuste de dichos parámetros.



Tabla 1. Rango de ajuste de parámetros CTF.

| Parámetro           | Ajuste Original | Rango de Ajuste |
|---------------------|-----------------|-----------------|
| Gradiente de subida | 19.6 MW/min     | Sin límite      |
| Gradiente de bajada | 19.6 MW/min     | Sin límite      |

#### 5.3. Parámetros de partida en frio del parque

Los parámetros de partida del parque se obtuvieron del informe de Parámetros de Partida y detención "A 0950 - Mytilineos - PSFV Wilka - Informe de determinación de Parámetros de Partida y Detención - V2", cuyos resultados se resumen a continuación a continuación:

Tabla 2. Parámetros de partida PSFV Wilka.

| Etapa                           | Tiempo [min] | Criterio | Observación |
|---------------------------------|--------------|----------|-------------|
| Partida - Sincronización        | 0,0000       | < 5 min  | Cumple      |
| Sincronización - Mínimo técnico | 0,033333     | < 10 min | Cumple      |

De las tablas anteriores se verifican los siguientes ítems:

- a) El tiempo hasta la sincronización es menor a 5 minutos
- b) El PSFV alcanza una potencia superior al mínimo técnico a los 15 minutos de aplicada la orden de partida de la central.

Finalmente, la reserva de CTF en frío se determina mediante la fórmula que se detalla a continuación:

$$CTF_{frio} = min\{(15 \ minutos - tiempo \ entre \ orden \ de \ partida \ y \ MT)* tasa \ de \ subida \ de \ carga + MT; PMAX \ neta\}$$

#### Donde:

MT = Mínimo técnico de la central (obtenido del informe de mínimo técnico de la central)

PMAX neta = Potencia máxima neta de la central (obtenido del informe de potencia máxima de la central)

Aplicando la fórmula se obtiene:

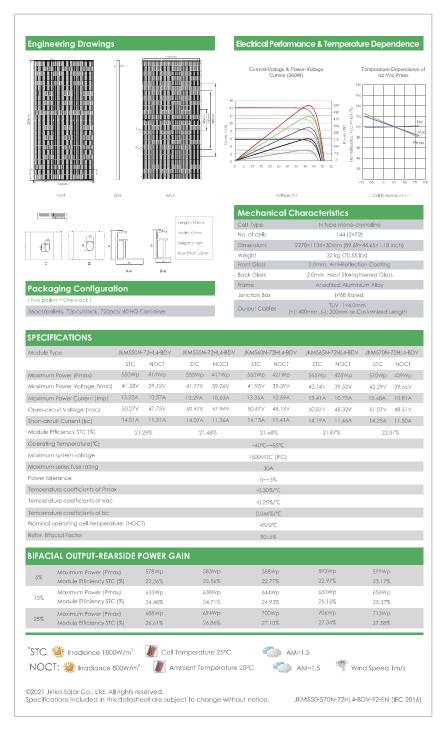


#### 6. Conclusiones

En relación con los ensayos realizados en campo, descritos en el presente informe, se concluye que el resultado de las pruebas realizadas fue satisfactorio. Los ensayos llevados a cabo fueron ejecutados de acuerdo con el protocolo confeccionado y a los requerimientos de la Norma Técnica.

- Se probó el correcto desempeño del control de planta en lo referido a la respuesta del control de potencia activa para distintos gradientes de reducción y toma de carga, requeridos para poder realizar el control terciario de frecuencia.
- Se probaron las pendientes de toma y reducción de carga de 10 %/min, 20 %/min y 70%/min. El control de potencia respondió adecuadamente y de forma estable.
- A partir de los parámetros de partida de la central se comprobó que el tiempo hasta la sincronización es inferior a 5 minutos y que el PSFV alcanza una potencia superior al mínimo técnico a los 15 minutos de aplicada la orden de partida.

De lo anterior el PSFV Willka, es apto para prestar servicios de control terciario de frecuencia.




## **ANEXO**

## 1. INFORMACIÓN TÉCNICA DEL EQUIPAMIENTO

#### 1.1. Datos de los paneles solares

Los paneles solares del PSFV Willka son de marca Jinko Solar y sus principales características se muestran a continuación:





### Gráfico 11. Características técnicas de los paneles solares.

#### 1.2. Datos de los inversores

El parque solar fotovoltaico Willka cuenta con 26 inversores marca PowerElectronics modelo HEMK GEN 3 660V – FS4200K, cuyas características técnicas se muestran en la siguiente figura:

|                               |                                              | FRAME 2                                           | FRAME 3                                | FRAME 4               |  |  |
|-------------------------------|----------------------------------------------|---------------------------------------------------|----------------------------------------|-----------------------|--|--|
| REFERENCES                    |                                              | FS2101K                                           | FS3151K                                | FS4200K               |  |  |
|                               | AC Output Power (kVA/kW) @40°C <sup>hl</sup> | 2100                                              | 3150                                   | 4200                  |  |  |
|                               | AC Output Power (kVA/kW) @50°C <sup>hl</sup> | 1950                                              | 2925                                   | 3900                  |  |  |
|                               | Max. AC Output Current (A) @40°C             | 1837                                              | 2756                                   | 3674                  |  |  |
| ОИТРИТ                        | Operating Grid Voltage (VAC)                 |                                                   | 660V ±10%                              | *                     |  |  |
| 001101                        | Operating Grid Frequency (Hz)                |                                                   | 50/60Hz                                |                       |  |  |
|                               | Current Harmonic Distortion (THDi)           |                                                   | < 3% per IEEE519                       |                       |  |  |
|                               | Power Factor (cosine phi)[ii]                | 0.5 leading 0.5 la                                | igging adjustable / I<br>tion at night | Reactive power injec- |  |  |
|                               | DC Voltage Range <sup>[3]</sup>              |                                                   | 934V - 1500V                           |                       |  |  |
|                               | Maximum DC Voltage                           |                                                   | 1500V                                  | ű*                    |  |  |
|                               | Number of Inputs                             | Up to 20                                          | Up to 30                               | Up to 40              |  |  |
| INPUT                         | Max. DC Continuous Current (A)[4]            | 2295                                              | 3443                                   | 4590                  |  |  |
|                               | Max. DC Short Circuit Current (A)[4]         | 3470                                              | 5205                                   | 6940                  |  |  |
|                               | Number of MPPt (floating systems)            | 1                                                 | 1                                      | 1, optionally 2 or 4  |  |  |
|                               | Number of Freemag DC/DC [4]                  | Up to 2 (Bus Plus Basic) or 4 (Bus Plus Advanced) |                                        |                       |  |  |
| TETIOIENOV                    | Efficiency (Max) (η)                         | 98.81%                                            | 98.84%                                 | 98.90%                |  |  |
| EFFICIENCY                    | Euroeta (n)                                  | 98.45%                                            | 98.48%                                 | 98.65%                |  |  |
|                               | Dimensions [WxDxH] (ft)                      |                                                   | 9.8 x 6.6 x 7.2                        | -                     |  |  |
|                               | Dimensions [WxDxH] (m)                       |                                                   | 3.0 x 2.0 x 2.2                        | av.                   |  |  |
| CABINET                       | Weight (lbs)                                 | 11465                                             | 11795                                  | 12125                 |  |  |
|                               | Weight (kg)                                  | 5200                                              | 5350                                   | 5500                  |  |  |
|                               | Type of Ventilation                          |                                                   | Forced air cooling                     | ]                     |  |  |
|                               | Degree of Protection                         |                                                   | NEMA 3R / IP55                         |                       |  |  |
| ENVIDOMENT                    | Permissible Ambient Temperature              | -25°C to +60°C, >50°C / Active Power derating     |                                        |                       |  |  |
| ENVIROMENT                    | Relative Humidity                            | 4%                                                | to 100% non-conde                      | nsing                 |  |  |
|                               | Max. Altitude (above sea level)              | 2000m / >20                                       | 00m power derating                     | g (Max. 4000m)        |  |  |
| CONTROL                       | Communication Protocol                       |                                                   | Modbus TCP                             |                       |  |  |
|                               | Power Plant Controller                       |                                                   | Optional                               |                       |  |  |
| INTERFACE                     | Keyed ON/OFF Switch                          |                                                   | Standard                               |                       |  |  |
|                               | Ground Fault Protection                      | GFDI and isolation monitoring device              |                                        |                       |  |  |
|                               | Humidity Control                             |                                                   | Active heating                         |                       |  |  |
| PROTECTIONS                   | General AC Protection & Disconn.             |                                                   | Circuit breaker                        |                       |  |  |
|                               | General DC Protection & Disconn.             | Fuses, DC switch-disconnectors                    |                                        |                       |  |  |
|                               | Overvoltage Protection                       | Type 2 protectio                                  | n for AC and DC (or                    | otionally, Type 1+2)  |  |  |
|                               | Safety                                       |                                                   |                                        | 52109-1 / IEC 62109-2 |  |  |
| CERTIFICATIONS<br>& STANDARDS | Installation                                 |                                                   | NEC 2020 / IEC                         |                       |  |  |
| M STANDARDS                   | Utility Interconnect                         | IEEE 1547:20                                      | 18 / UL 1741 SB / I                    | EC 62116:2014         |  |  |

Gráfico 12. Características generales de los inversores.

El consumo máximo de potencia en operación es de  $P_{SSAA\,INV}=10~kW$  según lo manifestado por el fabricante y se utilizará este valor en el cálculo de los servicios auxiliares del parque. La curva de capabilidad de los inversores se muetra a continuación:



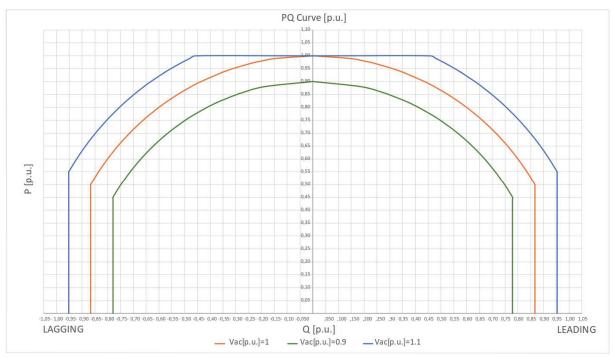



Gráfico 13. Curva de capabilidad de los inversores.

#### 1.3. Transformador de unidades

| * Anma Gücü (kVA)<br>* Rated Power | : 8400           | * Marka<br>* Brand                                 | : ELTAŞ                       |
|------------------------------------|------------------|----------------------------------------------------|-------------------------------|
| * Anma Gerilimi (kV)               | : 33 / 0.66-0.66 | * Seri No                                          | : YT-22-12977                 |
| * Rated Voltage                    |                  | * Serial Number                                    |                               |
| * Bağlantı Grubu                   | : Dy11y11        | * Proje No:                                        | : IEC.8400.33.AL.AY.60.H1     |
| * Vector Group                     |                  | * Project Number                                   |                               |
| * Frekans (Hz)                     | : 50             | Rapor No                                           | : 22.YDT.1836                 |
| * Frequency                        |                  | Report Number                                      |                               |
| * Soğutma Tipi                     | : ONAN           | * Tip                                              | : ELT-8400 / 36               |
| * Cooling                          |                  | * Type                                             |                               |
| * YG / AG Sargı İletkeni           | : AL/AL          | * İmal Tarihi                                      | : 11/2022                     |
| * HV / LV Winding Conductor        |                  | * Production Date                                  |                               |
| * Faz Sayısı                       | : 3              |                                                    |                               |
| * Number of Phases                 |                  | <ul> <li>Çalışma sıcaklığı ve Anma gücü</li> </ul> |                               |
| * Yalıtım Sınıfı                   | : A              | * Power Derating                                   |                               |
| * Insulation Class                 |                  | Çalışam Sıcaklığı / Ambient Temp. (°C)             | Anma Gücü / Rated Power (kVA) |
| * Isınma Yağ/Sargı                 | : 60 / 65 K      | 40                                                 | 8400                          |
| * Temp. Rise Oil / Winding         |                  |                                                    |                               |

| * Anma Gücü (kVA)           | : 4200      | * Marka                                            | : ELTAŞ                       |
|-----------------------------|-------------|----------------------------------------------------|-------------------------------|
| * Rated Power               |             | * Brand                                            |                               |
| * Anma Gerilimi (kV)        | : 33 / 0.66 | * Seri No                                          | : YT-22-12989                 |
| * Rated Voltage             |             | * Serial Number                                    |                               |
| * Bağlantı Grubu            | : Dy11      | * Proje No:                                        | : IEC.4200.33.AL.AY.60.H1     |
| * Vector Group              | 50 Page 1   | * Project Number                                   |                               |
| * Frekans                   | : 50 Hz     | Rapor No                                           | : 22.YDT.1903                 |
| * Frequency                 |             | Report Number                                      |                               |
| * Soğutma Tipi              | : ONAN      | * Tip                                              | : ELT-4200 / 36               |
| * Cooling                   |             | * Type                                             |                               |
| * YG / AG Sargı İletkeni    | : AL/AL     | * İmal Tarihi                                      | : 11/2022                     |
| * HV / LV Winding Conductor |             | * Production Date                                  |                               |
| * Faz Sayısı                | : 3         |                                                    |                               |
| * Number of Phases          |             | <ul> <li>Çalışma sıcaklığı ve Anma gücü</li> </ul> |                               |
| * Yalıtım Sınıfı            | : A         | * Power Derating                                   |                               |
| * Insulation Class          |             | Çalışam Sıcaklığı / Ambient Temp. (°C)             | Anma Gücü / Rated Power (kVA) |
| * Isınma Yağ/Sargı          | : 60 / 65 K | 40                                                 | 4200                          |
| * Temp. Rise Oil / Winding  |             |                                                    |                               |



| Ka                                | deme     | e / 7 | ap positio | on     |                   |       |       | 3          |       |  |
|-----------------------------------|----------|-------|------------|--------|-------------------|-------|-------|------------|-------|--|
|                                   | AKIM(A)  |       |            | G      | ERILIN            | 1(V)  | Т     | GUÇ(W)     |       |  |
|                                   | Current  |       |            | Voltac | je e              | ┸     | Pov   | /er        |       |  |
| U                                 | U 73.234 |       |            |        | 1696.             | 80    |       | 111        | 80    |  |
| V                                 | V 73.500 |       |            |        | 1704.             | 50    | Т     | 103        | 10    |  |
| W 73.783                          |          |       | П          | 1698.  | 40                | Т     | 10970 |            |       |  |
| ORT (Avrg)                        | 73.506   |       |            | 1699.  | 1699.90           |       | Σ :   | 32460      |       |  |
| Akım Düzeltme<br>(Current Corr.)  |          | 9996  | 6365       |        | iç Düze<br>ower C |       |       | 0.99932742 |       |  |
| In : 73.481                       | Α        | Un    | : 2944     | .31    | ٧                 | Pk :  |       | 32438      | W     |  |
| Garanti Edilen/Gua                | rantee   | d Va  | lues       | Pk=    | =                 | 33500 | )     | W          | + % 0 |  |
| Pk ( 75 °C )                      | =        |       |            | 3617   | 74                | W     |       |            |       |  |
| Garanti Edilen/ Guaranteed Values |          |       | %uk        | /usc=  | 8.                | 50    | ±     | % 10       |       |  |
| % Uk/ <i>Usc</i> ( 75 °C          | ) =      |       |            | 8.9    | 4                 |       |       |            |       |  |

### 1.4. Transformador principal

| Aplicado (%) | Fase  | Tensión (Vmed) | Tensión (Vrms) | Corriente (A) | _lo (%) | Pérdidas (W) |
|--------------|-------|----------------|----------------|---------------|---------|--------------|
| 100          | Media | 32764,6        | 32738,4        | 1,109         | 0,053   | 54748,35     |

| Potencia (kVA): 120000,0 |                         |                       |                            |                  |                                      |           |              |  |  |
|--------------------------|-------------------------|-----------------------|----------------------------|------------------|--------------------------------------|-----------|--------------|--|--|
| Devanado                 | Tensión (V)             | Corriente Fase (A)    | Condición                  | Temp             | Temperatura de Referencia (°C): 85,0 |           |              |  |  |
| Alta                     | 220000,0                | 314,918               | Aplicación                 | Pérdidas (       | Óhmicas (W)                          | Impe      | dancia (%)   |  |  |
| Baja                     | 33000,0                 | 1212,121              | Corto Circuito             | Alta:            | 152091,55                            | Indu      | ctiva: 12,51 |  |  |
|                          |                         |                       |                            | Baja:            | 135226,40                            | Res       | istiva: 0,27 |  |  |
|                          | Factor Tp<br>183,0      | Factor Tc<br>80,0     | Factor Pe<br>14640,0       | Suma : 287317 95 |                                      | V): 3770  | 37700,15     |  |  |
|                          | Temperatur              | a Ambiente (°C): 20,0 |                            | Resumen          |                                      |           |              |  |  |
| Fases                    | Tensión (V)             | Corriente Línea (A)   | Pérdidas (W)               | Corriente o      | de Excitación [10]                   | ] (%):    | 0,053        |  |  |
| Fase 1                   | 8491,2                  | 167,600               | 44505,60                   | Pérdid           | as en Vacío [P0]                     | (W):      | 54748,35     |  |  |
| Fase 2                   | se 2 8564,4 167,280 166 | 16689,60              | Pérdidas en Carga [Pe] (W) |                  |                                      | 325018,10 |              |  |  |
| Fase 3                   | 8326,5                  | 168,080               | 17128,80                   | F                | Pérdida Total [Pt]                   | (W):      | 379766,45    |  |  |
| Media                    | 14654,6                 | 167,680               | 78324,00                   |                  | Impedancia [Ez                       | ] (%):    | 12,51        |  |  |

Tabla 3. Especificación del transformador de potencia 220/33 kV de la SE Willka.

| Descripción                 | Valor              | Unidad |
|-----------------------------|--------------------|--------|
| Tensión Nominal             | 220/33             | kV     |
| Potencia Nominal            | 90/120 (ONAN/ONAF) | MVA    |
| Grupo de Conexión           | YNd1               |        |
| Impedancia de cortocircuito | 12.51              | %      |
| Pérdidas en cobre           | 3255               | kW     |
| Pérdidas en vacío           | 54.8               | kW     |



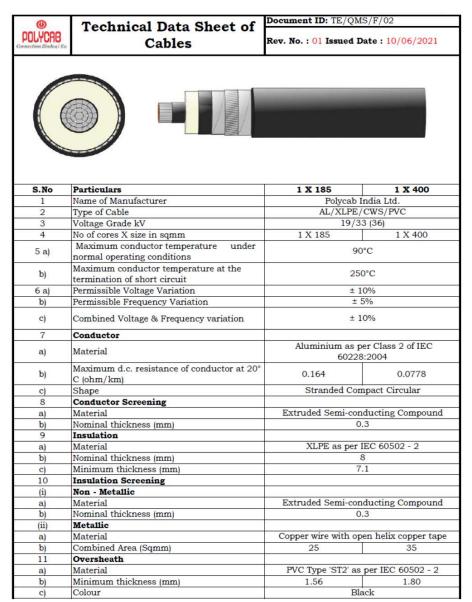

#### 1.5. Cables de media tensión

Tabla 4. Especificaciones de los tramos de cables del sistema colector.

| Circuito | Tramo     | Long<br>[km] | Cantidad y<br>Secc [mm²] | Circuito | Tramo     | Long<br>[km] | Cantidad y<br>Secc [mm²] |
|----------|-----------|--------------|--------------------------|----------|-----------|--------------|--------------------------|
|          | SE-PV11   | 0.78         | 2x400                    |          | SE-PV02   | 1.032        | 2x400                    |
| 1        | PV11-PV12 | 0.335        | 1x400                    | 4        | PV02-PV06 | 1.091        | 1x400                    |
|          | PV12-PV15 | 1.187        | 1x185                    |          | PV06-PV08 | 0.469        | 1x185                    |
|          | SE-PV10   | 0.49         | 2x400                    |          | SE-PV01   | 0.735        | 2x400                    |
| 2        | PV10-PV13 | 1.084        | 1x400                    | 5        | PV01-PV05 | 1.170        | 1x400                    |
|          | PV13-PV14 | 0.436        | 1x185                    |          | PV05-PV07 | 0.486        | 1x185                    |
|          | SE-PV09   | 0.149        | 2x400                    |          |           |              |                          |
| 3        | PV09-PV03 | 1.211        | 2x185                    |          |           |              |                          |
|          | PV03-PV04 | 0.303        | 1x185                    |          |           |              |                          |



Tabla 5. Parámetros eléctricos de los cables del sistema colector.



| r1       | <b>x1</b> | B1       | r0       | x <b>0</b> | B0       |
|----------|-----------|----------|----------|------------|----------|
| [Ω/km]   | [Ω/km]    | [μS/km]  | [Ω/km]   | [Ω/km]     | [μS/km]  |
| 0.009289 | 0.007891  | 1534.505 | 0.018673 | 0.005381   | 1534.505 |

Tabla 6. Colector equivalente del PSFV Willka.

#### 1.6. Reactor zig-zag para neutro artificial



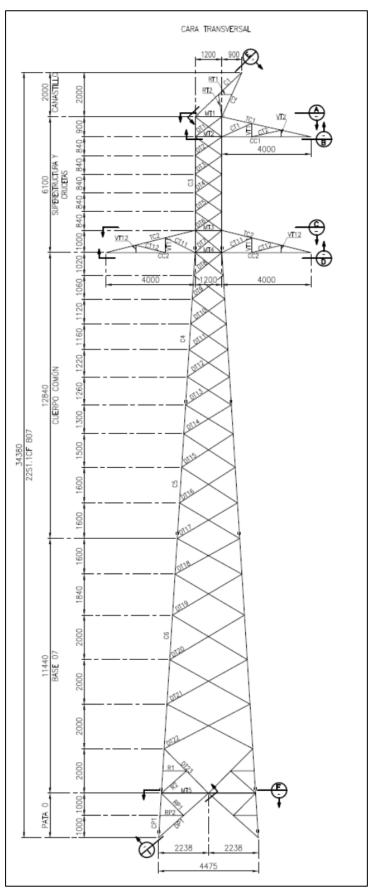
Tabla 7. Características técnicas principales del reactor de neutro.

| 3.0   | CARACTERÍSTICAS ELÉCTRICAS DE SERVICIO                              |        |                |       |
|-------|---------------------------------------------------------------------|--------|----------------|-------|
| 3.2   | Patio de 33 kV                                                      |        |                |       |
| 3.2.1 | Tensión nominal de servicio                                         | kV     | 33             | 33    |
| 3.2.2 | Tensión máxima de servicio                                          | kV     | 36             | 36    |
| 3.2.3 | Frecuencia                                                          | Hz     | 50             | 50    |
| 3.2.4 | Número de Fases                                                     |        | 3              | 3     |
| 3.2.5 | Nivel básico de impulso de la aislación (BIL)                       | kVcr   | 170            | 170   |
| 3.2.6 | Clase de aislamiento a la altura de instalación                     | kV     | 36             | 36    |
| 4.0   | CARACTERÍSTICAS TÉCNICAS                                            |        |                |       |
| 4.1   | Tensión máxima del equipo                                           | kV     | 36             | 36    |
| 4.3   | Potencia de cortocircuito asignada                                  | kVA    | Por Fabricante | 9527  |
| 4.4   | Potencia permanente                                                 | kVA    | 550            | 550   |
| 4.5   | Corriente asignada de falla a tierra en el neutro soportada por 10s | А      | 500            | 500   |
| 4.6   | Duración del cortocircuito                                          | seg    | 10             | 10    |
| 4.7   | Impedancia de secuencia cero en base a 550 kVA                      | Ω/Fase | 13,62          | 13,62 |
| 4.8   | Corriente asignada permanente en fase                               | A      | 16,67          | 16,67 |
| 4.9   | Corriente asignada de falla en fases                                | A      | 166,7          | 166,7 |
| 4.10  | Pérdidas en vacío                                                   | W      | Por Fabricante | 1400  |
| 4.11  | Pérdidas totales bajo carga                                         | W      | Por Fabricante | 2800  |

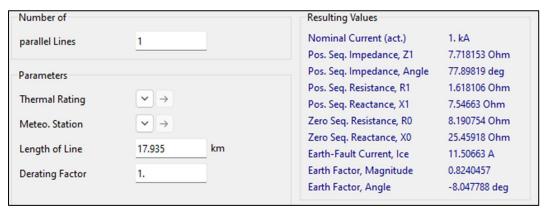


#### 1.7. Línea de interconexión

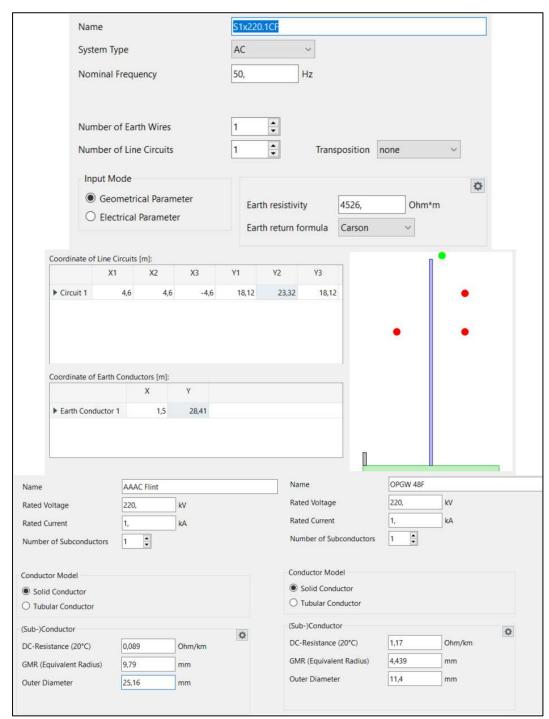
La planta solar se vincula a la SE Parinacota 220 kV mediante una línea simple circuito de 17,935 km. A continuación, se detallas características de este enlace y su modelado.




| ÍTEM | DESCRIPCIÓN                                              | UNIDAD | ESPECIFICADO | OFRECIDO     |
|------|----------------------------------------------------------|--------|--------------|--------------|
| D.2  | Nombre código                                            |        | FLINT        | FLINT        |
| D.3  | Normas que cumple                                        |        | B 398 B 399  | B 398 B 399  |
| D.4  | Área de la sección transversal nominal                   | mm²    | 375,4        | 375,4        |
| D.5  | Diámetro exterior nominal                                | mm     | 25,16        | 25,16        |
| D.6  | Diámetro de las hebras                                   | mm     | 3,59         | 3,59         |
| D.7  | Peso unitario nominal                                    | kg/m   | 1,034        | 1,03         |
| D.8  | Resistencia mínima a la rotura                           | kg     | 11067        | 11067        |
| D.9  | Número de hebras                                         |        | 37           | 37           |
| D.10 | Radio medio geométrico                                   | m      | 0,00966      | 0,00966      |
| D.11 | Módulo de elasticidad final                              | kg/mm2 | 6187         | 6187         |
| D.12 | Coeficiente de dilatación térmica                        | 1/°C   | 23x10-6      | 23x10-6      |
| D.13 | resistencia eléctrica en corriente alterna 50 hz a 25 °C | ohm/km | 0,090114     | 0,091882     |
| D.14 | Dirección del cableado                                   |        | Mano derecha | Mano derecha |
| D.15 | Tensión de operación de la línea eléctrica               |        | 220          | 220          |


| ITEM | DESCRIPCIÓN                                             | UNIDAD | ESPECIFICADO                 | OFRECIDO                     |
|------|---------------------------------------------------------|--------|------------------------------|------------------------------|
| D.2  | Tipo de cable                                           |        | OPGW                         | OPGW                         |
| D.3  | Normas con que cumple                                   |        | ASTM B-415, IEEE<br>STD 1138 | ASTM B-415, IEEE<br>STD 1138 |
| D.4  | Diámetro exterior nominal                               | mm     | ≤ 11.4                       | 11.4                         |
| D.5  | Peso unitario nominal                                   | kg/km  | 476.6                        | 476.6                        |
| D.6  | Resistencia mínima a la rotura                          | kg     | Por Proveedor                | 8684                         |
| D.7  | Número de alambres                                      | c/u    | Por Proveedor                | 6                            |
| D.8  | Dirección del cableado                                  |        | Izquierda                    | Izquierda                    |
| D.9  | Módulo de elasticidad final promedio (3% alargamiento)  | kg/mm² | Por Proveedor                | 16531                        |
| D.10 | Coeficiente de dilatación lineal                        | 1/°C   | Por Proveedor                | 13*10 <sup>-6</sup>          |
| D.11 | Resistencia eléctrica en corriente alterna 50 Hz a 25°C | ohm/km | Por Proveedor                | 1.345                        |
| D.12 | Capacidad de cortocircuito mínima                       | kA2s   | 19.7                         | 19.7                         |
| E    | ALAMBRES COMPONENTES DEL CABLE OPGW                     |        |                              |                              |
| E.1  | Normas con que cumple                                   |        | ASTM B-416                   | ASTM B-416                   |
| E.2  | Diámetro nominal                                        | mm     | Por Proveedor                | 3.8                          |
| E.3  | Espesor mínimo de la capa de aluminio                   | mm     | Por Proveedor                | 0.19                         |
| E.4  | Alargamiento promedio mínimo en 254 mm                  | %      | Por Proveedor                | 1.5                          |
| E.5  | Resistencia mínima a la rotura                          | kg     | Por Proveedor                | 1446.6                       |

|                    | Fase A | Fase B | Fase C | CG    |
|--------------------|--------|--------|--------|-------|
| Altura Cruceta [m] | 26.28  | 31.48  | 26.28  | 34.38 |
| Long CA [m]        | 2.19   | 2.19   | 2.19   | -     |
| Flecha [m]         | 8.95   | 8.95   | 8.95   | 8.95  |
| Alt Media [m]      | 18.12  | 23.32  | 18.12  | 28.41 |














### 2. VERIFICACIÓN DE AJUSTES

#### 2.1. Lógicas de inyección de corriente y LVRT

En los siguientes gráficos se presentan la curva FRT del inversor Power Electronics HEMK GEN 3 (en bornes del inversor) y la comparación entre esta y el requisito fijado en la NT (en el punto de conexión a la red).



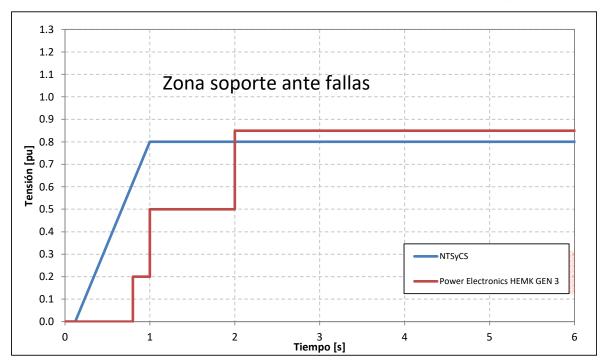



Gráfico 14. Curva límite tensión-tiempo Power Electronics HEMK GEN 3.

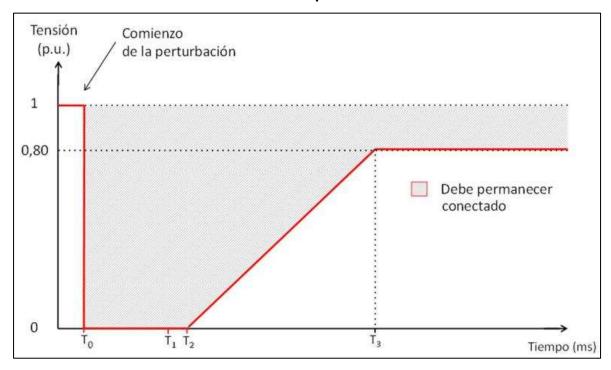



Gráfico 15. Curvas límite tensión-tiempo norma NT en punto de conexión.

Siendo:

**T0** = 0 [ms], tiempo de inicio de la falla.

**T1** = tiempo máximo de despeje de falla establecido en el Artículo 5-45, según el nivel de tensión del Punto de Conexión.

T2 = T1+20 [ms].



#### T3 = 1000 [ms].

Durante los huecos de tensión, el control cambia del modo normal (control de potencia activa y reactiva) al modo de control de corriente de rotor. Esto habilita al inversor a realizar soporte de tensión inyectando corriente reactiva a la red. La corriente reactiva en bornes del generador se encuentra configurada de acuerdo al Gráfico 16.

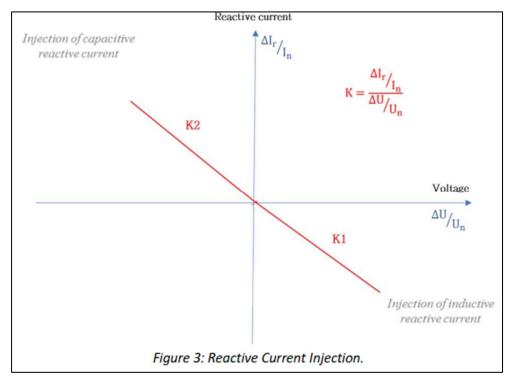



Gráfico 16. Inyección de corriente reactiva ante huecos de tensión. Power Electronics HEMK GEN 3.

|          | Low Voltage Ride Through Paramet | ers*             |     |
|----------|----------------------------------|------------------|-----|
| G4.3.1.1 | LVRT Model Enable*               | Mode 1           | -   |
| G4.3.1.2 | LVRT Threshold*                  | 90,0             | %   |
| G4.3.1.4 | LVRT Configuration Mode*         | Is prev + kdVdir | -   |
| G4.3.2.2 | Vset                             | 100,0            | %   |
| G4.3.2.7 | K DIR                            | 2                |     |
| G4.3.2.9 | K INV                            | 0                |     |
| G4.3.3.3 | Hysteresis %*                    | 5                | %   |
| G4.3.3.7 | ID Recover Ramp                  | 3000,0           | %/s |

|          | High Voltage Ride Through Paramete | ers*             |   |
|----------|------------------------------------|------------------|---|
| G4.4.1.1 | OVRT Model Enable*                 | Mode 1           | - |
| G4.4.1.2 | OVRT Threshold*                    | 110,0            | % |
| G4.4.1.4 | OVRT Configuration Mode*           | Is prev + kdVdir | - |
| G4.4.2.2 | Vset                               | 89,9             | % |
| G4.4.2.7 | K Factor*                          | 2                | - |
| G4.4.3.2 | Hysteresis %*                      | 5                | % |
| G4.4.3.7 | ID Recover Ramp                    | Disabled         | % |



#### 2.2. Ajuste de protecciones

#### 2.2.1 Protección de tensión

En las siguientes gráficos y tablas se muestra el ajuste de protecciones de tensión de los inversores, según la información proporcionada por el fabricante:

Tabla 8. Ajuste de protección de tensión.

|           | High Input Voltage                            |          |     |
|-----------|-----------------------------------------------|----------|-----|
| G5.1.2.1  | High V Enable                                 | XX       | 000 |
| G5.1.2.2  | Slow Protection                               | 110,00   | %   |
| G5.1.2.3  | Delay for Slow Protection (0.0 – 6550.0)      | 1,00     | sec |
| G5.1.2.4  | Fast Protection                               | 120,00   | %   |
| G5.1.2.5  | Delay for Fast Protection (0.00-655.00)       | 0,20     | sec |
| G5.1.2.6  | Fast 2 Protection                             | Disabled | %   |
| G5.1.2.7  | Delay for Fast 2 Protection (0.00-655.00)     | Disabled | sec |
| G5.1.2.8  | Very Fast Protection                          | Disabled | %   |
| G5.1.2.9  | Delay for Very Fast Protection (0.000-65.500) | Disabled | sec |
| G5.1.2.10 | Second Very Fast 2 Protection                 | Disabled | %   |
| G5.1.2.11 | Delay Very Fast 2 Protection (0.000-65.500)   | Disabled | sec |

|           | Low Input Voltage                             |          |     |
|-----------|-----------------------------------------------|----------|-----|
| G5.1.1.1  | Low V Enable                                  | XX       | X00 |
| G5.1.1.2  | Slow Protection                               | 85,00    | %   |
| G5.1.1.3  | Delay for Slow Protection (0.0 – 6550.0)      | 2,00     | sec |
| G5.1.1.4  | Fast Protection                               | 50,00    | %   |
| G5.1.1.5  | Delay for Fast Protection (0.00-655.00)       | 1,00     | sec |
| G5.1.1.6  | Fast 2 Protection                             | 20,00    | %   |
| G5.1.1.7  | Delay for Fast 2 Protection (0.00-655.00)     | 0,80     | sec |
| G5.1.1.8  | Very Fast Protection                          | Disabled | %   |
| G5.1.1.9  | Delay for Very Fast Protection (0.000-65.500) | Disabled | sec |
| G5.1.1.10 | Second Very Fast 2 Protection                 | Disabled | %   |
| G5.1.1.11 | Delay Very Fast 2 Protection (0.000-65.500)   | Disabled | sec |

#### 2.2.2 Protección de frecuencia

En las siguientes gráficos y tablas se muestra el ajuste de protecciones de tensión de los inversores, según la información proporcionada por el fabricante:



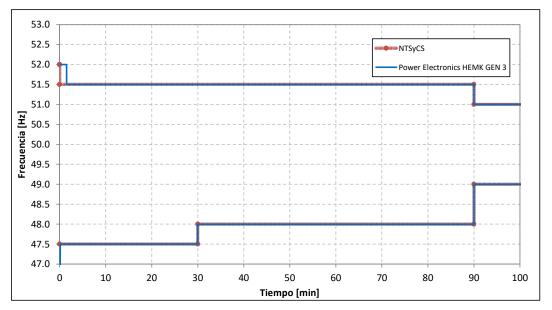



Gráfico 17. Ajuste de protección de frecuencia.

Tabla 9. Ajuste de protección de frecuencia.

|           | Low Input Frequency                           |          | o a march police. |
|-----------|-----------------------------------------------|----------|-------------------|
| G5.1.3.1  | Low f Enable                                  |          | XXX00             |
| G5.1.3.2  | Slow Protection                               | 49,00    | Hz                |
| G5.1.3.3  | Delay for Slow Protection (0.0 – 6550.0)      | 5400,00  | Second            |
| G5.1.3.4  | Fast Protection                               | 48,00    | Hz                |
| G5.1.3.5  | Delay for Fast Protection (0.00-655.00)       | 1800,00  | Second            |
| G5.1.3.6  | Fast 2 Protection                             | 47,50    | Hz                |
| G5.1.3.7  | Delay for Fast 2 Protection (0.00-655.00)     | 0,10     | Second            |
| G5.1.3.8  | Very Fast Protection                          | Disabled | Hz                |
| G5.1.3.9  | Delay for Very Fast Protection (0.000-65.500) | Disabled | Second            |
| G5.1.3.10 | Second Very Fast 2 Protection                 | Disabled | Hz                |
| G5.1.3.11 | Delay Very Fast 2 Protection (0.000-65.500)   | Disabled | Second            |

| High Input Frequency |                                               |          |        |  |
|----------------------|-----------------------------------------------|----------|--------|--|
| G5.1.4.1             | High f Enable                                 |          | XXX00  |  |
| G5.1.4.2             | Slow Protection                               | 51,00    | Hz     |  |
| G5.1.4.3             | Delay for Slow Protection (0.0 – 6550.0)      | 5400,00  | Second |  |
| G5.1.4.4             | Fast Protection                               | 51,50    | Hz     |  |
| G5.1.4.5             | Delay for Fast Protection (0.00-655.00)       | 90,00    | Second |  |
| G5.1.4.6             | Fast 2 Protection                             | 52,00    | Hz     |  |
| G5.1.4.7             | Delay for Fast 2 Protection (0.00-655.00)     | 0,10     | Second |  |
| G5.1.4.8             | Very Fast Protection                          | Disabled | Hz     |  |
| G5.1.4.9             | Delay for Very Fast Protection (0.000-65.500) | Disabled | Second |  |
| G5.1.4.10            | Second Very Fast 2 Protection                 | Disabled | Hz     |  |
| G5.1.4.11            | Delay Very Fast 2 Protection (0.000-65.500)   | Disabled | Second |  |



#### 3. ARCHIVOS ADJUNTOS ENTREGADOS

Forman parte integral del presente informe los siguientes archivos que se entregan en forma adjunta:

• Registro de ensayos: Registros\_PSFV\_Willka\_SSCC.rar

Todos los registros de ensayos del presente informe son entregados adjuntos en formato ".csv".